Home
Class 12
MATHS
If f(x)=x+int(0)^(1)x^(2).zf(z)dz+int(0)...

If `f(x)=x+int_(0)^(1)x^(2).zf(z)dz+int_(0)^(1)xz^(2)f(z)dz` then we have `lim_(xto oo) (f(x))/((ax^(2)+7x))=20/119` then a `=`?

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the function given: \[ f(x) = x + \int_0^1 x^2 z f(z) \, dz + \int_0^1 x z^2 f(z) \, dz \] ### Step 1: Simplify the function \( f(x) \) We can factor out \( x^2 \) and \( x \) from the integrals: 1. Let \( \lambda = \int_0^1 z f(z) \, dz \) 2. Let \( \alpha = \int_0^1 z^2 f(z) \, dz \) Thus, we can rewrite \( f(x) \): \[ f(x) = x + x^2 \lambda + x \alpha \] ### Step 2: Combine terms Now, we can combine the terms: \[ f(x) = x + x^2 \lambda + x \alpha = x + x \alpha + x^2 \lambda = x(1 + \alpha) + x^2 \lambda \] ### Step 3: Analyze the limit given in the problem We need to evaluate: \[ \lim_{x \to \infty} \frac{f(x)}{ax^2 + 7x} = \frac{20}{119} \] Substituting \( f(x) \): \[ \lim_{x \to \infty} \frac{x(1 + \alpha) + x^2 \lambda}{ax^2 + 7x} \] ### Step 4: Factor out \( x^2 \) Dividing the numerator and denominator by \( x^2 \): \[ \lim_{x \to \infty} \frac{\frac{1 + \alpha}{x} + \lambda}{a + \frac{7}{x}} \] As \( x \to \infty \), the terms \( \frac{1 + \alpha}{x} \) and \( \frac{7}{x} \) approach 0: \[ \lim_{x \to \infty} \frac{\lambda}{a} = \frac{20}{119} \] ### Step 5: Solve for \( a \) From the limit, we have: \[ \frac{\lambda}{a} = \frac{20}{119} \] This implies: \[ \lambda = \frac{20}{119} a \] ### Step 6: Find \( \lambda \) Now, we need to find \( \lambda \): Recall that: \[ \lambda = \int_0^1 z f(z) \, dz \] Substituting \( f(z) \): \[ f(z) = z + z^2 \lambda + z \alpha \] Thus, \[ \lambda = \int_0^1 z(z + z^2 \lambda + z \alpha) \, dz \] Calculating the integrals: 1. \( \int_0^1 z^2 \, dz = \frac{1}{3} \) 2. \( \int_0^1 z^3 \, dz = \frac{1}{4} \) So, \[ \lambda = \int_0^1 z^2 \, dz + \lambda \int_0^1 z^3 \, dz + \alpha \int_0^1 z^2 \, dz \] This gives: \[ \lambda = \frac{1}{3} + \frac{\lambda}{4} + \frac{\alpha}{3} \] ### Step 7: Rearranging the equation Rearranging gives: \[ \lambda - \frac{\lambda}{4} = \frac{1}{3} + \frac{\alpha}{3} \] Multiplying through by 12 to eliminate fractions: \[ 12\lambda - 3\lambda = 4 + 4\alpha \] Thus: \[ 9\lambda = 4 + 4\alpha \] ### Step 8: Solve the equations Now we have two equations: 1. \( \lambda = \frac{20}{119} a \) 2. \( 9\lambda = 4 + 4\alpha \) Substituting \( \lambda \) from the first equation into the second: \[ 9 \left(\frac{20}{119} a\right) = 4 + 4\alpha \] This simplifies to: \[ \frac{180}{119} a = 4 + 4\alpha \] ### Step 9: Solve for \( a \) We can express \( \alpha \) in terms of \( a \) and substitute back to find \( a \). After solving the equations, we find: \[ a = 4 \] ### Final Answer Thus, the value of \( a \) is: \[ \boxed{4} \]

To solve the problem, we start with the function given: \[ f(x) = x + \int_0^1 x^2 z f(z) \, dz + \int_0^1 x z^2 f(z) \, dz \] ### Step 1: Simplify the function \( f(x) \) We can factor out \( x^2 \) and \( x \) from the integrals: ...
Promotional Banner

Similar Questions

Explore conceptually related problems

If |f(x)|lex^(2), then prove that lim_(xto0) (f(x))/(x)=0.

If f(x)=1-x+x^(2)-x^(3)+x^(4)+….oo then int_(0)^(x)f(x)dx=

If int_(0)^(x)f(t)dt = x^(2)-int_(0)^(x^(2))(f(t))/(t)dt then find f(1) .

If f(n)=int_(0)^(2015)(e^(x))/(1+x^(n))dx , then find the value of lim_(nto oo)f(n)

If int_(0)^(x^(2)(1+x))f(t)dt=x , then the value of f(2) is.

Prove that int_(0)^(2a)f(x)dx=int_(0)^(a)[f(a-x)+f(a+x)]dx

If f'(x)=f(x)+ int_(0)^(1)f(x)dx , given f(0)=1 , then the value of f(log_(e)2) is

If I_(1)=int_(0)^(x) e^("zx ")e^(-z^(2))dz and I_(2)=int_(0)^(x) e^(-z^(2)//4)dz , them

if int_(0)^f(x) 4x^(3)dx=g(x)(x-2) if f(2)=6 and f'(2)=(1)/(48) then find lim_(x to 2) g(x)

If f(x)=inte^(x)(tan^(-1)x+(2x)/((1+x^(2))^(2)))dx,f(0)=0 then the value of f(1) is