Home
Class 12
MATHS
If x is root of (1+x^(4))=7(1+x)^(4) the...

If `x` is root of `(1+x^(4))=7(1+x)^(4)` then `|x+1/x|=` ?

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \(1 + x^4 = 7(1 + x)^4\) and find \(|x + \frac{1}{x}|\), we will follow these steps: ### Step 1: Simplify the equation Start with the given equation: \[ 1 + x^4 = 7(1 + x)^4 \] ### Step 2: Expand the right-hand side Expand \((1 + x)^4\) using the binomial theorem: \[ (1 + x)^4 = 1 + 4x + 6x^2 + 4x^3 + x^4 \] Thus, we have: \[ 1 + x^4 = 7(1 + 4x + 6x^2 + 4x^3 + x^4) \] ### Step 3: Distribute the 7 Distributing the 7 gives: \[ 1 + x^4 = 7 + 28x + 42x^2 + 28x^3 + 7x^4 \] ### Step 4: Rearrange the equation Rearranging the equation leads to: \[ x^4 - 7x^4 - 42x^2 - 28x^3 - 28x + 1 - 7 = 0 \] This simplifies to: \[ -6x^4 - 28x^3 - 42x^2 - 28x - 6 = 0 \] Dividing through by -6 gives: \[ x^4 + \frac{14}{3}x^3 + 7x^2 + \frac{14}{3}x + 1 = 0 \] ### Step 5: Substitute \(t = x + \frac{1}{x}\) Let \(t = x + \frac{1}{x}\). Then, we can express \(x^2 + \frac{1}{x^2}\) in terms of \(t\): \[ x^2 + \frac{1}{x^2} = t^2 - 2 \] ### Step 6: Substitute back into the equation Substituting \(x + \frac{1}{x} = t\) into the rearranged equation: \[ t^2 - 2 = 7(t + 2) \] Expanding gives: \[ t^2 - 2 = 7t + 14 \] Rearranging leads to: \[ t^2 - 7t - 16 = 0 \] ### Step 7: Solve the quadratic equation Using the quadratic formula: \[ t = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{7 \pm \sqrt{(-7)^2 - 4 \cdot 1 \cdot (-16)}}{2 \cdot 1} \] Calculating the discriminant: \[ 49 + 64 = 113 \] Thus: \[ t = \frac{7 \pm \sqrt{113}}{2} \] ### Step 8: Find \(|x + \frac{1}{x}|\) Now, we need to find \(|t|\): The possible values for \(t\) are: \[ t_1 = \frac{7 + \sqrt{113}}{2}, \quad t_2 = \frac{7 - \sqrt{113}}{2} \] Since \(\sqrt{113} \approx 10.63\), we can evaluate: \[ t_1 \approx \frac{7 + 10.63}{2} \approx 8.815, \quad t_2 \approx \frac{7 - 10.63}{2} \approx -1.815 \] Thus, \(|t|\) can be: \[ |t_1| \approx 8.815 \quad \text{and} \quad |t_2| \approx 1.815 \] ### Conclusion The possible values for \(|x + \frac{1}{x}|\) are: \[ |x + \frac{1}{x}| = \frac{7 + \sqrt{113}}{2} \quad \text{or} \quad |x + \frac{1}{x}| = \frac{7 - \sqrt{113}}{2} \]

To solve the equation \(1 + x^4 = 7(1 + x)^4\) and find \(|x + \frac{1}{x}|\), we will follow these steps: ### Step 1: Simplify the equation Start with the given equation: \[ 1 + x^4 = 7(1 + x)^4 \] ...
Promotional Banner

Similar Questions

Explore conceptually related problems

1+ 4x^(2)+7x^(4)+...

The number of positive integral roots of x^(4) + x^(3) - 4 x^(2) + x + 1 = 0 , is

Let f : R to and f (x) = (x (x^(4) + 1) (x+1) +x ^(4)+2)/(x^(2) +x+1), then f (x) is :

If f(x) = [4-(x-7)^(3)], then f^(-1)(x)= ………… .

If -1 +i is a root of x^4 + 4x^3 + 5x^2 + k=0 then its real roots are

If f(x)= {4 - (x-7)^(3)} , then find f^(-1)(x)=

The equation x ^(4) -2x ^(3)-3x^2 + 4x -1=0 has four distinct real roots x _(1), x _(2), x _(3), x_(4) such that x _(1) lt x _(2) lt x _(3)lt x _(4) and product of two roots is unity, then : x _(1)x _(2) +x_(1)x_(3) + x_(2) x _(4) +x_(3) x _(4)=

Find the coefficient of x^(12) in expansion of (1-x^(2)+x^(4))^(3)(1-x)^(7) .

intdx/root(3)((x+1)^2(x-1)^4)

intdx/root(3)((x+1)^2(x-1)^4)