Home
Class 12
MATHS
If vecc=3veca-2vecbthen prove that[(bara...

If `vecc=3veca-2vecb`then prove that`[(bara, barb, barc)]=0`

Text Solution

AI Generated Solution

The correct Answer is:
To prove that \([ \vec{a}, \vec{b}, \vec{c} ] = 0\) given that \(\vec{c} = 3\vec{a} - 2\vec{b}\), we will follow these steps: ### Step 1: Understand the notation The notation \([ \vec{a}, \vec{b}, \vec{c} ]\) represents the scalar triple product, which can be expressed as \(\vec{a} \cdot (\vec{b} \times \vec{c})\). ### Step 2: Substitute \(\vec{c}\) We know that \(\vec{c} = 3\vec{a} - 2\vec{b}\). Therefore, we can write: \[ [ \vec{a}, \vec{b}, \vec{c} ] = \vec{a} \cdot (\vec{b} \times (3\vec{a} - 2\vec{b})) \] ### Step 3: Expand the cross product Using the distributive property of the cross product, we can expand this as: \[ \vec{b} \times (3\vec{a} - 2\vec{b}) = \vec{b} \times 3\vec{a} - \vec{b} \times 2\vec{b} \] This simplifies to: \[ 3(\vec{b} \times \vec{a}) - 2(\vec{b} \times \vec{b}) \] ### Step 4: Simplify the terms Since the cross product of any vector with itself is zero, we have: \[ \vec{b} \times \vec{b} = 0 \] Thus, the expression simplifies to: \[ 3(\vec{b} \times \vec{a}) - 0 = 3(\vec{b} \times \vec{a}) \] ### Step 5: Substitute back into the scalar triple product Now substituting this back into the scalar triple product: \[ [ \vec{a}, \vec{b}, \vec{c} ] = \vec{a} \cdot (3(\vec{b} \times \vec{a})) \] This can be factored as: \[ = 3(\vec{a} \cdot (\vec{b} \times \vec{a})) \] ### Step 6: Evaluate the dot product The dot product of a vector with the cross product of itself and another vector is always zero: \[ \vec{a} \cdot (\vec{b} \times \vec{a}) = 0 \] Thus, we have: \[ [ \vec{a}, \vec{b}, \vec{c} ] = 3 \cdot 0 = 0 \] ### Conclusion Therefore, we have shown that \([ \vec{a}, \vec{b}, \vec{c} ] = 0\). ---

To prove that \([ \vec{a}, \vec{b}, \vec{c} ] = 0\) given that \(\vec{c} = 3\vec{a} - 2\vec{b}\), we will follow these steps: ### Step 1: Understand the notation The notation \([ \vec{a}, \vec{b}, \vec{c} ]\) represents the scalar triple product, which can be expressed as \(\vec{a} \cdot (\vec{b} \times \vec{c})\). ### Step 2: Substitute \(\vec{c}\) We know that \(\vec{c} = 3\vec{a} - 2\vec{b}\). Therefore, we can write: \[ ...
Promotional Banner

Similar Questions

Explore conceptually related problems

If veca , vecb and vecc are three vectors such that vecaxx vecb =vecc, vecb xx vecc= veca, vecc xx veca =vecb then prove that |veca|= |vecb|=|vecc|

If barr.bara=barr.barb=barr.barc=0 for non-zero vector barr then the value of (bara barb barc) is

If vectors barb, bar c ,bard are not coplanar then prove that (bara times barb) times (barc times overlind)+(bara times barc) times (bard times barb)+(bara times bard) times (barb times barc) is parallel to bara .

For any three vectors bara, barb, barc prove : [bara-barb, barb-barc, barc-bara]=0

Let bara barb barc be three unit vectors such that |bara+barb+barc| =1 and barc makes angles a and b with bara and barb respectively then cosa+cosb is equal to

For three non - zero vectors veca, vecb and vecc , if [(veca, vecb and vecc)]=4 , then [vecaxx(vecb+2vecc)vecbxx(vecc-3veca)vecc xx(3veca+vecb)] is equal to

Volume of parallelepiped determined by vectors bara,barb and barc is 5. Then the volume of the parallelepiped determined by the vectors 3(bara +barb). (barb + barc) and 2( barc + bara) is

If bara ,barb and barc are three unit vectors such that bara times (barb times barc)=1/2 barb Find the angles which bara makes with barb and barc .

If veca, vecb, vecc are non-coplanar vectors, prove that the following vectors are coplanar. (i) 3veca - 7vecb - 4vecc, 3veca - 2vecb + vecc, veca + vecb + 2vecc (ii) 5veca +6vecb + 7vecc, 7veca - 8vecb + 9vecc, 3veca + 20 vecb + 5vecc

Let veca and vecb are vectors such that |veca|=2, |vecb|=3 and veca. vecb=4 . If vecc=(3veca xx vecb)-4vecb , then |vecc| is equal to