Home
Class 12
MATHS
If cos^(-1)(2-x^(2))+sin^(-1)(2-x^(2))+t...

If `cos^(-1)(2-x^(2))+sin^(-1)(2-x^(2))+tan^(-1)xge(2pi)/3` have no solution if `xltalpha` or `xgt beta`(for `alphalt beta`) then `{1/("max"(alpha))+("min"(beta))^(2)}=`………

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will analyze the expression given and determine the values of \( \alpha \) and \( \beta \) such that the inequality has no solution for \( x < \alpha \) or \( x > \beta \). ### Step 1: Analyze the given expression We start with the inequality: \[ \cos^{-1}(2 - x^2) + \sin^{-1}(2 - x^2) + \tan^{-1}(x) \geq \frac{2\pi}{3} \] ### Step 2: Determine the range of \( 2 - x^2 \) The functions \( \cos^{-1}(y) \) and \( \sin^{-1}(y) \) are defined for \( y \) in the range \([-1, 1]\). Therefore, we need: \[ -1 \leq 2 - x^2 \leq 1 \] This leads to two inequalities: 1. \( 2 - x^2 \geq -1 \) which simplifies to \( x^2 \leq 3 \) or \( |x| \leq \sqrt{3} \). 2. \( 2 - x^2 \leq 1 \) which simplifies to \( x^2 \geq 1 \) or \( |x| \geq 1 \). Combining these, we find: \[ 1 \leq |x| \leq \sqrt{3} \] This means: \[ x \in [-\sqrt{3}, -1] \cup [1, \sqrt{3}] \] ### Step 3: Simplify the expression using the identity Using the identity \( \sin^{-1}(y) + \cos^{-1}(y) = \frac{\pi}{2} \), we can rewrite the expression: \[ \frac{\pi}{2} + \tan^{-1}(x) \geq \frac{2\pi}{3} \] Subtract \( \frac{\pi}{2} \) from both sides: \[ \tan^{-1}(x) \geq \frac{2\pi}{3} - \frac{\pi}{2} \] Calculating the right side: \[ \frac{2\pi}{3} - \frac{3\pi}{6} = \frac{4\pi - 3\pi}{6} = \frac{\pi}{6} \] Thus, we have: \[ \tan^{-1}(x) \geq \frac{\pi}{6} \] ### Step 4: Solve for \( x \) The inequality \( \tan^{-1}(x) \geq \frac{\pi}{6} \) implies: \[ x \geq \tan\left(\frac{\pi}{6}\right) = \frac{1}{\sqrt{3}} \] ### Step 5: Combine the intervals From our earlier analysis, we have: 1. \( x \in [-\sqrt{3}, -1] \cup [1, \sqrt{3}] \) 2. \( x \geq \frac{1}{\sqrt{3}} \) This means the solution set is: \[ x \in [1, \sqrt{3}] \] Thus, \( \alpha = \frac{1}{\sqrt{3}} \) and \( \beta = \sqrt{3} \). ### Step 6: Calculate the final expression We need to find: \[ \frac{1}{\max(\alpha)} + \frac{1}{\min(\beta)^2} \] Here, \( \max(\alpha) = \frac{1}{\sqrt{3}} \) and \( \min(\beta) = \sqrt{3} \). Calculating: \[ \frac{1}{\frac{1}{\sqrt{3}}} + \frac{1}{(\sqrt{3})^2} = \sqrt{3} + \frac{1}{3} = \sqrt{3} + \frac{1}{3} \] ### Final Answer: Thus, the final answer is: \[ \sqrt{3} + \frac{1}{3} \]

To solve the problem step by step, we will analyze the expression given and determine the values of \( \alpha \) and \( \beta \) such that the inequality has no solution for \( x < \alpha \) or \( x > \beta \). ### Step 1: Analyze the given expression We start with the inequality: \[ \cos^{-1}(2 - x^2) + \sin^{-1}(2 - x^2) + \tan^{-1}(x) \geq \frac{2\pi}{3} \] ...
Promotional Banner

Similar Questions

Explore conceptually related problems

cos 2 alpha =(3 cos 2 beta -1)/( 3-cos 2 beta), then tan alpha=

Prove that (sin alpha cos beta + cos alpha sin beta) ^(2) + (cos alpha coa beta - sin alpha sin beta) ^(2) =1.

Show that cos^(-1) ((cos alpha+cos beta)/(1+cosalpha cosbeta))=2 tan^(-1)(tan (alpha/2) tan (beta/2))

If m sin (alpha+beta) = cos (alpha-beta) , prove that (1)/(1- m sin 2 alpha)+(1)/(1-m sin 2 beta)=(2)/(1-m^(2)) .

If 3 sin alpha=5 sin beta , then (tan((alpha+beta)/2))/(tan ((alpha-beta)/2))=

If tan (alpha-beta)=(sin 2beta)/(3-cos 2beta) , then

Let -pi/6 beta_1 and alpha_2 >beta_2 , then alpha_1 + beta_2 equals:

alpha & beta are solutions of a cos theta+b sin theta=c(cosalpha != cos beta)&(sin alpha != sin beta) Then tan((alpha+beta)/2)=?

If : sin (alpha + beta)=1 and sin (alpha-beta)=(1)/(2), "then" : tan (alpha+2beta)*tan(2alpha+beta)=

If alpha = sin^(-1) (cos(sin^-1) x)) and beta = cos^(-1) (sin (cos^(-1) x)) , then find tan alpha. tan beta.