Home
Class 12
MATHS
If f(x)=(3x^(2)+1)/(sqrt(x^(4)+x^(2))) A...

If `f(x)=(3x^(2)+1)/(sqrt(x^(4)+x^(2))) AA 0gtxlesqrt(2)`, then `f(x)` has minimum value `M` at `x=m`. Then `(m^(2) +1/(M^(2)))` is equal to

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will analyze the function \( f(x) = \frac{3x^2 + 1}{\sqrt{x^4 + x^2}} \) for \( 0 < x \leq \sqrt{2} \) and find its minimum value \( M \) at \( x = m \). We will then compute \( m^2 + \frac{1}{M^2} \). ### Step 1: Simplify the function We start with the function: \[ f(x) = \frac{3x^2 + 1}{\sqrt{x^4 + x^2}} \] We can factor the denominator: \[ \sqrt{x^4 + x^2} = \sqrt{x^2(x^2 + 1)} = x\sqrt{x^2 + 1} \] Thus, we can rewrite \( f(x) \): \[ f(x) = \frac{3x^2 + 1}{x\sqrt{x^2 + 1}} = \frac{3x^2}{x\sqrt{x^2 + 1}} + \frac{1}{x\sqrt{x^2 + 1}} = \frac{3x}{\sqrt{x^2 + 1}} + \frac{1}{x\sqrt{x^2 + 1}} \] ### Step 2: Find critical points To find the minimum value, we will differentiate \( f(x) \) and set the derivative to zero. Let: \[ f(x) = \frac{3x}{\sqrt{x^2 + 1}} + \frac{1}{x\sqrt{x^2 + 1}} \] We will use the quotient rule and product rule to differentiate \( f(x) \). ### Step 3: Differentiate \( f(x) \) Using the quotient rule: \[ f'(x) = \frac{(3\sqrt{x^2 + 1} - \frac{3x^2}{\sqrt{x^2 + 1}}) + \left(-\frac{1}{x^2\sqrt{x^2 + 1}} + \frac{1}{x}\cdot\frac{x}{2\sqrt{x^2 + 1}}\right)}{(x^2 + 1)} \] Setting \( f'(x) = 0 \) will give us the critical points. ### Step 4: Solve for critical points After differentiating and simplifying, we will find the critical points \( x \) that satisfy \( f'(x) = 0 \). ### Step 5: Evaluate \( f(x) \) at critical points and endpoints We will evaluate \( f(x) \) at the critical points found in Step 4 and at the endpoints \( x = 0 \) and \( x = \sqrt{2} \). ### Step 6: Determine minimum value \( M \) and corresponding \( m \) From the evaluations, we will find the minimum value \( M \) and the corresponding \( m \). ### Step 7: Calculate \( m^2 + \frac{1}{M^2} \) Finally, we will compute: \[ m^2 + \frac{1}{M^2} \]

To solve the problem step by step, we will analyze the function \( f(x) = \frac{3x^2 + 1}{\sqrt{x^4 + x^2}} \) for \( 0 < x \leq \sqrt{2} \) and find its minimum value \( M \) at \( x = m \). We will then compute \( m^2 + \frac{1}{M^2} \). ### Step 1: Simplify the function We start with the function: \[ f(x) = \frac{3x^2 + 1}{\sqrt{x^4 + x^2}} \] ...
Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=cos^(-1)(x^((3)/(2))-sqrt(1-x-x^(2)+x^(3))),AA 0 le x le 1 then the minimum value of f(x) is

If f(x) =(x-4)/(2sqrt(x)) , then f^(')(1) is equal to

If f(x)=(a+sqrt(a^2-x^2)+x)/(sqrt(a^2-x^2)+a-x) where a>0 then f'(0) has the value equal to

If the function f(x)=cos^(-1)(x^((3)/(2))-sqrt(1-x-x^(2)+x^(3))) (" where, "AA 0 lt x lt 1), then the value of |sqrt3f'((1)/(2))| is equal to ("take "sqrt3=1.73)

If f (x)=((x+1)^(7)sqrt(1+x ^(2)))/((x^(2) -x+1)^(6)), then the value of f'(0) is equal to:

Consider int(3x^(4)+2x^(2)+1)/(sqrt(x^(4)+x^(2)+1))dx=f(x) . If f(1)=sqrt3 , then (f(2))^(2) is equal to

If f(x) = 2 sin^(-1) sqrt(1-x) + sin^(-1)(2 sqrt(x (1-x))) where x in (0, 1/2) , then f'(x) has the value equal to (i) 2/(xsqrt(1-x)) (ii) 0 (iii) -2/(xsqrt(1-x)) (iv) pi

If f(x)=sqrt(4-x^2)+sqrt(x^2-1) , then the maximum value of (f(x))^2 is ____________

If f(x)=sqrt(4-x^2)+sqrt(x^2-1) , then the maximum value of (f(x))^2 is ____________

If f(x)=sqrt(x-4sqrt(x-4))+tan^(-1)((1-2x)/(2+x)), AA 4 lt x lt 8 , then the value of f'(5) is equal to