Home
Class 12
MATHS
If x=int(0)^(oo)(dt)/((1+t^(2))(1+t^(201...

If `x=int_(0)^(oo)(dt)/((1+t^(2))(1+t^(2017)))`, then `(3x)/(pi)` is equal to

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the integral \[ x = \int_{0}^{\infty} \frac{dt}{(1+t^2)(1+t^{2017})} \] and then find the value of \(\frac{3x}{\pi}\). ### Step 1: Change of Variables We will use the substitution \( t = \tan(\theta) \). This gives us \( dt = \sec^2(\theta) d\theta \). ### Step 2: Adjust the Limits When \( t = 0 \), \( \theta = 0 \) and when \( t \to \infty \), \( \theta \to \frac{\pi}{2} \). ### Step 3: Rewrite the Integral Substituting \( t = \tan(\theta) \) into the integral, we have: \[ x = \int_{0}^{\frac{\pi}{2}} \frac{\sec^2(\theta) d\theta}{(1+\tan^2(\theta))(1+\tan^{2017}(\theta))} \] ### Step 4: Simplify the Integral Using the identity \( 1 + \tan^2(\theta) = \sec^2(\theta) \), we can simplify the integral: \[ x = \int_{0}^{\frac{\pi}{2}} \frac{\sec^2(\theta) d\theta}{\sec^2(\theta)(1+\tan^{2017}(\theta))} = \int_{0}^{\frac{\pi}{2}} \frac{d\theta}{1+\tan^{2017}(\theta)} \] ### Step 5: Evaluate the Integral The integral \[ \int_{0}^{\frac{\pi}{2}} \frac{d\theta}{1+\tan^{2017}(\theta)} \] is known to evaluate to \(\frac{\pi}{4}\) for any positive integer \( n \) in the form \( \int_{0}^{\frac{\pi}{2}} \frac{d\theta}{1+\tan^n(\theta)} = \frac{\pi}{4}\). Thus, we have: \[ x = \frac{\pi}{4} \] ### Step 6: Calculate \(\frac{3x}{\pi}\) Now we can calculate: \[ \frac{3x}{\pi} = \frac{3 \cdot \frac{\pi}{4}}{\pi} = \frac{3}{4} \] ### Final Answer Therefore, the value of \(\frac{3x}{\pi}\) is \[ \frac{3}{4} \]

To solve the problem, we need to evaluate the integral \[ x = \int_{0}^{\infty} \frac{dt}{(1+t^2)(1+t^{2017})} \] and then find the value of \(\frac{3x}{\pi}\). ...
Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=int_(2)^(x)(dt)/(1+t^(4)) , then

If int_(0)^(x)f(t)dt=x^2+int_(x)^(1)\ t^2\ f(t)dt , then f((1)/(2)) is equal to (a) (24)/(25) (b) (4)/(25) (c) (4)/(5) (d) (2)/(5)

If int_(1)^(x) (dt)/(|t|sqrt(t^(2)-t)) = (pi)/(6) , then x can be equal to :

The value of int_(1/e)^(tanx)(tdt)/(1+t^2)+int_(1/e)^(cotx)(dt)/(t(1+t^2)), where x in (pi/6,pi/3) , is equal to: (a)0 (b) 2 (c) 1 (d) none of these

If f(x)=int_(1)^(x) (log t)/(1+t) dt"then" f(x)+f((1)/(x)) is equal to

If f(x) =int_(0)^(x) sin^(4)t dt , then f(x+2pi) is equal to

If int_(0)^(x^(2)) sqrt(1+t^(2)) dt, then f'(x)n equals

If f(x)= int_(0^(sinx) cos^(-1)t dt +int_(0)^(cosx) sin^(-1)t dt, 0 lt x lt (pi)/(2) then f(pi//4) is equal to

If f(x)=int_(0)^(1)(dt)/(1+|x-t|),x in R . The value of f'(1//2) is equal to

Let f:(0,oo)to R and F(x)=int_(0)^(x) f(t)dt. " If " F(x^(2))=x^(2)(1+x) , then f(4) equals