Home
Class 12
MATHS
Let S(n)=sum(r=1)^(n)((r^(4)r^(3)n+r^(2)...

Let `S_(n)=sum_(r=1)^(n)((r^(4)_r^(3)n+r^(2)n^(2)+2n^(4))/(n^(5)))` and `T_(n)=sum_(r=0)^(n-1)((r^(4)+r^(3)n^(2)+2n^(4))/(n^(5))),n=1,2,3,`……….then

A

`T_(n)gt167/60`

B

`T_(n)lt167/60`

C

`S_(n)gt167/60`

D

`S_(n)lt167/60`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the sums \( S_n \) and \( T_n \) given by: \[ S_n = \sum_{r=1}^{n} \frac{r^4 + r^3 n + 2n^4}{n^5} \] \[ T_n = \sum_{r=0}^{n-1} \frac{r^4 + r^3 n^2 + 2n^4}{n^5} \] Let's break down the steps to find \( S_n \) and \( T_n \). ### Step 1: Simplifying \( S_n \) We can rewrite \( S_n \) as follows: \[ S_n = \frac{1}{n^5} \sum_{r=1}^{n} (r^4 + r^3 n + 2n^4) \] This can be separated into three sums: \[ S_n = \frac{1}{n^5} \left( \sum_{r=1}^{n} r^4 + n \sum_{r=1}^{n} r^3 + 2n^4 \sum_{r=1}^{n} 1 \right) \] ### Step 2: Evaluating the individual sums Using the formulas for the sums: - \( \sum_{r=1}^{n} r^4 = \frac{n(n+1)(2n+1)(3n^2 + 3n - 1)}{30} \) - \( \sum_{r=1}^{n} r^3 = \left( \frac{n(n+1)}{2} \right)^2 \) - \( \sum_{r=1}^{n} 1 = n \) We can substitute these into our expression for \( S_n \). ### Step 3: Substitute the sums into \( S_n \) Substituting the sums into \( S_n \): \[ S_n = \frac{1}{n^5} \left( \frac{n(n+1)(2n+1)(3n^2 + 3n - 1)}{30} + n \left( \frac{n(n+1)}{2} \right)^2 + 2n^4 n \right) \] ### Step 4: Simplifying \( T_n \) Now, let's simplify \( T_n \): \[ T_n = \frac{1}{n^5} \sum_{r=0}^{n-1} (r^4 + r^3 n^2 + 2n^4) \] This can also be separated into three sums: \[ T_n = \frac{1}{n^5} \left( \sum_{r=0}^{n-1} r^4 + n^2 \sum_{r=0}^{n-1} r^3 + 2n^4 \sum_{r=0}^{n-1} 1 \right) \] ### Step 5: Evaluating the individual sums for \( T_n \) Using similar formulas for the sums: - \( \sum_{r=0}^{n-1} r^4 = \frac{(n-1)n(2n-1)(3n^2 - 3n + 1)}{30} \) - \( \sum_{r=0}^{n-1} r^3 = \left( \frac{(n-1)n}{2} \right)^2 \) - \( \sum_{r=0}^{n-1} 1 = n \) Substituting these sums into \( T_n \): \[ T_n = \frac{1}{n^5} \left( \frac{(n-1)n(2n-1)(3n^2 - 3n + 1)}{30} + n^2 \left( \frac{(n-1)n}{2} \right)^2 + 2n^4 n \right) \] ### Step 6: Final Evaluation Now, we can evaluate both \( S_n \) and \( T_n \) for specific values of \( n \) (like \( n=1, 2, 3 \)) to find their respective sums.

To solve the problem, we need to evaluate the sums \( S_n \) and \( T_n \) given by: \[ S_n = \sum_{r=1}^{n} \frac{r^4 + r^3 n + 2n^4}{n^5} \] \[ T_n = \sum_{r=0}^{n-1} \frac{r^4 + r^3 n^2 + 2n^4}{n^5} ...
Promotional Banner

Similar Questions

Explore conceptually related problems

Let T_(n) = sum_(r=1)^(n) (n)/(r^(2)-2r.n+2n^(2)), S_(n) = sum_(r=0)^(n)(n)/(r^(2)-2r.n+2n^(2)) then

If sum_(r=1)^(n) T_(r)=(n(n+1)(n+2)(n+3))/(8) , then lim_(ntooo) sum_(r=1)^(n) (1)/(T_(r))=

If S_(n)=sum_(r=1)^(n) a_(r)=(1)/(6)n(2n^(2)+9n+13) , then sum_(r=1)^(n)sqrt(a_(r)) equals

l isum_(n-gtoo)sum_(r=1)^n1/(sqrt(4n^2-r^2))

Prove that sum_(r=0)^(2n)(r. ^(2n)C_r)^2=n^(4n)C_(2n) .

lim_(nrarr0) sum_(r=1)^(n) ((r^(3))/(r^(4)+n^(4))) equals to :

Let T_(n)=(1)/((sqrt(n)+sqrt(n+1))(4sqrt(n)+4sqrt(n+1))) and S_(n)=sum_(r=1)^(n)T_(r) then find S_(15) .

If S_(n) = sum_(r=1)^(n) (r )/(1.3.5.7"……"(2r+1)) , then

(sum_(r=1)^n r^4)/(sum_(r=1)^n r^2) is equal to

Prove that sum_(r=0)^(2n) r.(""^(2n)C_(r))^(2)= 2.""^(4n-1)C_(2n-1) .