Home
Class 12
MATHS
A vectors vecr satisfies the equations v...

A vectors `vecr` satisfies the equations `vecr xx veca=vecb` and `vecr*veca=0`. Then

A

`vecr= (veca xx vecb)/(veca*vecb)`

B

`vecr= (veca xx vecb)/(veca*veca)`

C

`vecr= (veca xx vecb)/(vecb*vecb)`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the given equations involving the vector \(\vec{r}\): 1. **Given Equations**: - \(\vec{r} \times \vec{a} = \vec{b}\) - \(\vec{r} \cdot \vec{a} = 0\) 2. **Understanding the Equations**: - The equation \(\vec{r} \times \vec{a} = \vec{b}\) indicates that \(\vec{b}\) is perpendicular to both \(\vec{r}\) and \(\vec{a}\) since the cross product of two vectors results in a vector that is orthogonal to both. - The equation \(\vec{r} \cdot \vec{a} = 0\) indicates that \(\vec{r}\) is also perpendicular to \(\vec{a}\). 3. **Finding the Relationship**: - Since \(\vec{r}\) is perpendicular to \(\vec{a}\), we can express \(\vec{r}\) in terms of \(\vec{b}\) and \(\vec{a}\). - We can use the identity for the cross product: \[ \vec{b} = \vec{r} \times \vec{a} \] - Rearranging gives us: \[ \vec{r} = \frac{\vec{b} \times \vec{a}}{|\vec{a}|^2} \] 4. **Conclusion**: - Thus, we can express \(\vec{r}\) in terms of \(\vec{b}\) and \(\vec{a}\) as: \[ \vec{r} = \frac{\vec{b} \times \vec{a}}{|\vec{a}|^2} \] 5. **Final Result**: - The correct option based on the above derivation is option (b).

To solve the problem, we need to analyze the given equations involving the vector \(\vec{r}\): 1. **Given Equations**: - \(\vec{r} \times \vec{a} = \vec{b}\) - \(\vec{r} \cdot \vec{a} = 0\) 2. **Understanding the Equations**: - The equation \(\vec{r} \times \vec{a} = \vec{b}\) indicates that \(\vec{b}\) is perpendicular to both \(\vec{r}\) and \(\vec{a}\) since the cross product of two vectors results in a vector that is orthogonal to both. ...
Promotional Banner

Similar Questions

Explore conceptually related problems

If vecb is not perpendicular to vecc . Then find the vector vecr satisfying the equation vecr xx vecb = veca xx vecb and vecr. vecc=0

If vecb is not perpendicular to vecc . Then find the vector vecr satisfying the equation vecr xx vecb = veca xx vecb and vecr. vecc=0

Let veca and vecb be two non- zero perpendicular vectors. A vector vecr satisfying the equation vecr xx vecb = veca can be

Let veca=-hati-hatk,vecb =-hati + hatj and vecc = i + 2hatj + 3hatk be three given vectors. If vecr is a vector such that vecr xx vecb = vecc xx vecb and vecr.veca =0 then find the value of vecr .vecb .

Let veca -2hati + hatj +hatk , vecb =hati + 2hatj +hatk and vecc = 2hati -3hatj +4hatk . A " vector " vecr " satisfying " vecr xx vecb = vecc xx vecb and vecr . Veca =0 is

If veca and vecb are mutually perpendicular unit vectors, vecr is a vector satisfying vecr.veca =0, vecr.vecb=1 and (vecr veca vecb)=1 , then vecr is:

Vectors vecA and vecB satisfying the vector equation vecA+ vecB = veca, vecA xx vecB =vecb and vecA.veca=1 . where veca and vecb are given vectosrs, are

Let veca=hati-3hatj+4hatk , vecB=6hati+4hatj-8hatk , vecC=5hati+2hatj+5hatk and a vector vecR satisfies vecR xx vecB = vecC xx vecB , vecR.vecA=0 , then the value of (|vecB|)/(|vecR-vecC|) is

Let vecr be a unit vector satisfying vecr xx veca = vecb, " where " |veca|= sqrt3 and |vecb| = sqrt2 , then (a)vecr= 2/3(veca+ veca xx vecb) (b) vecr= 1/3(veca+ veca xx vecb) (c) vecr= 2/3(veca- veca xx vecb) (d) vecr= 1/3(-veca+ veca xx vecb)

If veca,vecb and vecc are non coplnar and non zero vectors and vecr is any vector in space then [vecc vecr vecb]veca+[veca vecr vecc] vecb+[vecb vecr veca]c= (A) [veca vecb vecc] (B) [veca vecb vecc]vecr (C) vecr/([veca vecb vecc]) (D) vecr.(veca+vecb+vecc)