Home
Class 12
MATHS
Projection of the vector veca=2hati+3hat...

Projection of the vector `veca=2hati+3hatj-2hatk` on the vector `vecb=hati+2hatj+3hatk` is

A

`2/sqrt14`

B

`1/sqrt14`

C

`3/sqrt14`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the projection of the vector \(\vec{a} = 2\hat{i} + 3\hat{j} - 2\hat{k}\) on the vector \(\vec{b} = \hat{i} + 2\hat{j} + 3\hat{k}\), we can use the formula for the projection of vector \(\vec{a}\) onto vector \(\vec{b}\): \[ \text{Projection of } \vec{a} \text{ on } \vec{b} = \frac{\vec{a} \cdot \vec{b}}{|\vec{b}|^2} \vec{b} \] ### Step 1: Calculate the dot product \(\vec{a} \cdot \vec{b}\) The dot product \(\vec{a} \cdot \vec{b}\) is calculated as follows: \[ \vec{a} \cdot \vec{b} = (2\hat{i} + 3\hat{j} - 2\hat{k}) \cdot (\hat{i} + 2\hat{j} + 3\hat{k}) \] Calculating the dot product: \[ = 2 \cdot 1 + 3 \cdot 2 + (-2) \cdot 3 \] \[ = 2 + 6 - 6 \] \[ = 2 \] ### Step 2: Calculate the magnitude of \(\vec{b}\) The magnitude of vector \(\vec{b}\) is given by: \[ |\vec{b}| = \sqrt{1^2 + 2^2 + 3^2} \] \[ = \sqrt{1 + 4 + 9} \] \[ = \sqrt{14} \] ### Step 3: Calculate the projection Now we can substitute the values into the projection formula: \[ \text{Projection of } \vec{a} \text{ on } \vec{b} = \frac{\vec{a} \cdot \vec{b}}{|\vec{b}|^2} \vec{b} \] First, we need \( |\vec{b}|^2 \): \[ |\vec{b}|^2 = 14 \] Now substituting back: \[ \text{Projection of } \vec{a} \text{ on } \vec{b} = \frac{2}{14} \vec{b} \] \[ = \frac{1}{7} \vec{b} \] Now substituting \(\vec{b}\): \[ = \frac{1}{7} (\hat{i} + 2\hat{j} + 3\hat{k}) \] \[ = \frac{1}{7} \hat{i} + \frac{2}{7} \hat{j} + \frac{3}{7} \hat{k} \] ### Final Answer The projection of the vector \(\vec{a}\) on the vector \(\vec{b}\) is: \[ \frac{1}{7} \hat{i} + \frac{2}{7} \hat{j} + \frac{3}{7} \hat{k} \]

To find the projection of the vector \(\vec{a} = 2\hat{i} + 3\hat{j} - 2\hat{k}\) on the vector \(\vec{b} = \hat{i} + 2\hat{j} + 3\hat{k}\), we can use the formula for the projection of vector \(\vec{a}\) onto vector \(\vec{b}\): \[ \text{Projection of } \vec{a} \text{ on } \vec{b} = \frac{\vec{a} \cdot \vec{b}}{|\vec{b}|^2} \vec{b} \] ### Step 1: Calculate the dot product \(\vec{a} \cdot \vec{b}\) ...
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the projection of the vector veca=3hati+2hatj-4hatk on the vector vecb=hati+2hatj+hatk .

The projection of vector veca=2hati+3hatj+2hatk , on the vector vecb=hati+2hatj+hatk is

Find the projection of vector veca=5hati-hatj-3hatk on the vector vecb=hati+hatj+hatk .

Find the projection oif veca=2hati+3hatj+2hatk on the vector vecb=hati+2hatj+hatk .

The projection of the vector vecA = hati - 2hatj + hatk on the vector vecB = 4hati - 4hatj + 7hatk is

The projection of vector veca=2hati+3hatj+2hatk along vecb=hati+2hatj+1hatk is

The vector component of vector vecA =3hati +4hatj +5hatk along vector vecB =hati +hatj +hatk is :

Find the unit vector in the direction of the sum of the vectors veca=2hati+2hatj-5hatk and vecb=2hati+hatj+3hatk .

The magnitude of the projection of the vector 2hati+3hatj+hatk on the vector perpendicular to the plane containing the vectors hati+hatj+hatk" and "hati+2hatj+3hatk , is

Find the scalar and vector products of two vectors veca=(2hati-3hatj+4hatk) and vecb(hati-2hatj+3hatk) .