Home
Class 12
MATHS
sin163^@ cos347^@+sin73^@sin167^@=...

`sin163^@ cos347^@+sin73^@sin167^@=`

A

0

B

`1/2`

C

1

D

`2/3`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \sin 163^\circ \cos 347^\circ + \sin 73^\circ \sin 167^\circ \), we can simplify each term using trigonometric identities. ### Step-by-step Solution: 1. **Rewrite the angles using identities**: - \( \sin 163^\circ = \sin(180^\circ - 17^\circ) = \sin 17^\circ \) - \( \cos 347^\circ = \cos(360^\circ - 13^\circ) = \cos 13^\circ \) - \( \sin 73^\circ = \sin(90^\circ - 17^\circ) = \cos 17^\circ \) - \( \sin 167^\circ = \sin(180^\circ - 13^\circ) = \sin 13^\circ \) 2. **Substitute the rewritten angles into the expression**: \[ \sin 163^\circ \cos 347^\circ + \sin 73^\circ \sin 167^\circ = \sin 17^\circ \cos 13^\circ + \cos 17^\circ \sin 13^\circ \] 3. **Use the sine addition formula**: The sine addition formula states that: \[ \sin A \cos B + \cos A \sin B = \sin(A + B) \] Here, let \( A = 17^\circ \) and \( B = 13^\circ \): \[ \sin 17^\circ \cos 13^\circ + \cos 17^\circ \sin 13^\circ = \sin(17^\circ + 13^\circ) = \sin 30^\circ \] 4. **Calculate \( \sin 30^\circ \)**: We know that: \[ \sin 30^\circ = \frac{1}{2} \] 5. **Final Result**: Therefore, the value of the original expression is: \[ \sin 163^\circ \cos 347^\circ + \sin 73^\circ \sin 167^\circ = \frac{1}{2} \]

To solve the expression \( \sin 163^\circ \cos 347^\circ + \sin 73^\circ \sin 167^\circ \), we can simplify each term using trigonometric identities. ### Step-by-step Solution: 1. **Rewrite the angles using identities**: - \( \sin 163^\circ = \sin(180^\circ - 17^\circ) = \sin 17^\circ \) - \( \cos 347^\circ = \cos(360^\circ - 13^\circ) = \cos 13^\circ \) - \( \sin 73^\circ = \sin(90^\circ - 17^\circ) = \cos 17^\circ \) ...
Promotional Banner

Similar Questions

Explore conceptually related problems

sin 163^0cos 347^0+sin 73^0sin 167^0= a. 1//2 b. 1 c. 0 d. none of these

The smallest positive value of x (in degrees) for whichcos tanx=(cos5^@ cos 20^@ + cos 35^@ cos 50^@-sin 50^@ sin 20^@ - sin35^@ sin50^@)/(sin5^@ cos 20^@ - sin 35^@ cos 50^@ + cos 5^@ sin 20^@ - cos 35^@ sin 50^@) is equal to

Prove that sin 12^(@) sin18^(@)sin42^(@) sin48^(@) sin 72^(@) sin78^(@)=(cos18^(@))/(32) .

Evaluate: (i) (sin^2 63^@+sin^2 27^@)/(cos^2 17^@+cos^2 73^@) (ii) sin 25^@ cos 65^@+cos 25^@sin 65^@

The values of cos^2 73^0+cos^2 47^0-sin^2 43^0+sin^2 107^0 is equal to: (b) 1/2 (c) (sqrt(3))/2 (d) sin^2 73^@+cos^4 73^@

The value of (sin 1^(@) +sin 3^(@) + sin 5^(@) +sin 7^(@))/(cos 1^(@)*cos 2^(@)sin 4^(@)) is __________

((sin 33^(@))/( sin 11^(@) sin 49^(@) sin 71^(@)))^(2) + (( cos 33^(@))/(cos 11^(@) cos 49^(@) cos 71^(@)))^(2) is equal to ______.

Value of (2sin9^(@)sin 21^(@)sin 39^(@)sin 51^(@)cos21^(@)sin 81^(@))/(sin54^(@)) is equal to:-

Evaluate sin 27 ^(@) sin 63 ^(@) - cos 63^(@) cos 27 ^(@)

cos^(2)73^(@)+cos^(2)47^(@)-sin^(2)43^(@)+sin^(2)107^(@) is equal to