Home
Class 12
MATHS
If y = (3-x^2)(x^3-x+1) then finddy/dx...

If `y = (3-x^2)(x^3-x+1)` then find`dy/dx`

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative of the function \( y = (3 - x^2)(x^3 - x + 1) \), we will use the product rule of differentiation. The product rule states that if you have two functions \( u \) and \( v \), then the derivative of their product is given by: \[ \frac{d(uv)}{dx} = u \frac{dv}{dx} + v \frac{du}{dx} \] ### Step 1: Identify the functions Let: - \( u = 3 - x^2 \) - \( v = x^3 - x + 1 \) ### Step 2: Differentiate \( u \) and \( v \) Now we need to find \( \frac{du}{dx} \) and \( \frac{dv}{dx} \). 1. **Differentiate \( u \)**: \[ \frac{du}{dx} = \frac{d}{dx}(3 - x^2) = 0 - 2x = -2x \] 2. **Differentiate \( v \)**: \[ \frac{dv}{dx} = \frac{d}{dx}(x^3 - x + 1) = 3x^2 - 1 + 0 = 3x^2 - 1 \] ### Step 3: Apply the product rule Now we can apply the product rule: \[ \frac{dy}{dx} = u \frac{dv}{dx} + v \frac{du}{dx} \] Substituting the values we found: \[ \frac{dy}{dx} = (3 - x^2)(3x^2 - 1) + (x^3 - x + 1)(-2x) \] ### Step 4: Simplify the expression Now we will simplify the expression: 1. **Expand the first term**: \[ (3 - x^2)(3x^2 - 1) = 9x^2 - 3 - 3x^4 + x^2 = -3x^4 + 10x^2 - 3 \] 2. **Expand the second term**: \[ (x^3 - x + 1)(-2x) = -2x^4 + 2x^2 - 2x \] 3. **Combine both terms**: \[ \frac{dy}{dx} = (-3x^4 + 10x^2 - 3) + (-2x^4 + 2x^2 - 2x) \] \[ = -5x^4 + 12x^2 - 2x - 3 \] ### Final Answer Thus, the derivative \( \frac{dy}{dx} \) is: \[ \frac{dy}{dx} = -5x^4 + 12x^2 - 2x - 3 \]

To find the derivative of the function \( y = (3 - x^2)(x^3 - x + 1) \), we will use the product rule of differentiation. The product rule states that if you have two functions \( u \) and \( v \), then the derivative of their product is given by: \[ \frac{d(uv)}{dx} = u \frac{dv}{dx} + v \frac{du}{dx} \] ### Step 1: Identify the functions Let: ...
Promotional Banner

Similar Questions

Explore conceptually related problems

(i) Let y=((2+5x)^(2))/(x^(3) -1) then find dy/dx

If y=[(x^2+1)/(x+1)] , then find (dy)/(dx) .

If y= (x^2 +3)/( x^3 + 2x) , find (dy)/( dx) at x=1 .

If y=3x^2+2x , then find dy//dx .

If y=[3x+2][2x-1] , then find (dy)/(dx) .

y=(5x)^(3cos 2x) then find (dy)/(dx) .

y=x(x+1)^3 find dy/dx

If y=[2x^3+3][2x^-3+1] , then find (dy)/(dx) .

If y^3-3x y^2=x^3+3x^2\ y , find (dy)/(dx)

Given that y=(3x-1)^(2)+(2x-1)^(3) , find (dy)/(dx) and points on the curve for which (dy)/(dx)=0 .