Home
Class 12
MATHS
Let lim(n->oo)sum(k=1)^n(lambdak^4+2k^3...

Let `lim_(n->oo)sum_(k=1)^n(lambdak^4+2k^3+k^2+k+1)/(3n^5+n^2+n+5k)=1/3` then `lambda` is equal to

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit problem given, we will follow these steps: ### Step 1: Write the limit expression We start with the limit expression: \[ \lim_{n \to \infty} \sum_{k=1}^{n} \frac{\lambda k^4 + 2k^3 + k^2 + k + 1}{3n^5 + n^2 + n + 5k} \] ### Step 2: Simplify the denominator As \( n \) approaches infinity, the dominant term in the denominator is \( 3n^5 \). Thus, we can factor out \( 3n^5 \): \[ 3n^5 + n^2 + n + 5k \approx 3n^5 \left(1 + \frac{n^2}{3n^5} + \frac{n}{3n^5} + \frac{5k}{3n^5}\right) \] This simplifies to: \[ 3n^5 \left(1 + \frac{1}{3n^3} + \frac{1}{3n^4} + \frac{5k}{3n^5}\right) \] ### Step 3: Rewrite the limit Now we can rewrite the limit as: \[ \lim_{n \to \infty} \sum_{k=1}^{n} \frac{\lambda k^4 + 2k^3 + k^2 + k + 1}{3n^5} \cdot \frac{1}{1 + \frac{1}{3n^3} + \frac{1}{3n^4} + \frac{5k}{3n^5}} \] ### Step 4: Evaluate the sum The sum can be approximated as \( n \) approaches infinity. The dominant term in the numerator is \( \lambda k^4 \), so we can focus on that: \[ \sum_{k=1}^{n} k^4 \approx \frac{n^5}{5} \] Thus, we have: \[ \sum_{k=1}^{n} \left(\lambda k^4 + 2k^3 + k^2 + k + 1\right) \approx \lambda \cdot \frac{n^5}{5} + 2 \cdot \frac{n^4}{4} + \frac{n^3}{3} + \frac{n^2}{2} + n \] ### Step 5: Substitute back into the limit Now substituting back into the limit: \[ \lim_{n \to \infty} \frac{\lambda \cdot \frac{n^5}{5} + O(n^4)}{3n^5} \] This simplifies to: \[ \lim_{n \to \infty} \left(\frac{\lambda}{15} + O\left(\frac{1}{n}\right)\right) = \frac{\lambda}{15} \] ### Step 6: Set the limit equal to \( \frac{1}{3} \) According to the problem, this limit equals \( \frac{1}{3} \): \[ \frac{\lambda}{15} = \frac{1}{3} \] ### Step 7: Solve for \( \lambda \) Multiplying both sides by 15 gives: \[ \lambda = 5 \] ### Final Answer Thus, the value of \( \lambda \) is: \[ \lambda = 5 \] ---

To solve the limit problem given, we will follow these steps: ### Step 1: Write the limit expression We start with the limit expression: \[ \lim_{n \to \infty} \sum_{k=1}^{n} \frac{\lambda k^4 + 2k^3 + k^2 + k + 1}{3n^5 + n^2 + n + 5k} \] ...
Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate ("lim")_(n rarr oo)sum_(k=1)^nk/(n^2+k^2)

The value of lim _( n to oo) sum _(k =1) ^(n) ((k)/(n ^(2) +n +2k))=

The value of lim_(n->oo) sum_(k=1)^n log(1+k/n)^(1/n) ,is

Evaluate : sum_(k=1)^n (2^k+3^(k-1))

The value of lim_(n->oo)sum_(k=1)^n(6^k)/((3^k-2^k)(3^(k+1)-2^(k+1)) is equal to

If sum_(k=1)^(k=n)tan^(- 1)((2k)/(2+k^2+k^4))=tan^(- 1)(6/7), then the value of 'n' is equal to

if f(x) = lim_(n->oo) 2/n^2(sum_(k=1)^n kx)((3^(nx)-1)/(3^(nx)+1)) where n in N , then find the sum of all the solution of the equation f(x) = |x^2 - 2|

If the value of the sum n^(2) + n - sum_(k = 1)^(n) (2k^(3)+ 8k^(2) + 6k - 1)/(k^(2) + 4k + 3) as n tends to infinity can be expressed in the form (p)/(q) find the least value of (p + q) where p, q in N

Let f(n)= sum_(k=1)^(n) k^2 ^"(n )C_k)^ 2 then the value of f(5) equals

Value of L = lim_(n->oo) 1/n^4 [1 sum_(k=1)^n k + 2sum_(k=1)^(n-1) k + 3 sum_(k=1)^(n-2) k +.....+n.1] is