Home
Class 12
MATHS
Let f(x)=(5x+6)/(7x+9) then, f^-1(x)=?...

Let `f(x)=(5x+6)/(7x+9)` then, `f^-1(x)`=?

Text Solution

AI Generated Solution

The correct Answer is:
To find the inverse of the function \( f(x) = \frac{5x + 6}{7x + 9} \), we will follow these steps: ### Step 1: Set \( f(x) \) equal to \( y \) Let \( y = f(x) \). Therefore, we have: \[ y = \frac{5x + 6}{7x + 9} \] ### Step 2: Cross-multiply to eliminate the fraction Cross-multiplying gives us: \[ y(7x + 9) = 5x + 6 \] ### Step 3: Distribute \( y \) on the left-hand side Distributing \( y \) results in: \[ 7xy + 9y = 5x + 6 \] ### Step 4: Rearrange the equation to isolate terms involving \( x \) Rearranging the equation to group the terms involving \( x \) on one side gives: \[ 7xy - 5x = 6 - 9y \] ### Step 5: Factor out \( x \) from the left-hand side Factoring out \( x \) from the left side yields: \[ x(7y - 5) = 6 - 9y \] ### Step 6: Solve for \( x \) Now, we can solve for \( x \) by dividing both sides by \( (7y - 5) \): \[ x = \frac{6 - 9y}{7y - 5} \] ### Step 7: Write the inverse function Since we have expressed \( x \) in terms of \( y \), we can write the inverse function: \[ f^{-1}(y) = \frac{6 - 9y}{7y - 5} \] ### Step 8: Replace \( y \) with \( x \) to express the inverse function in standard notation Thus, the inverse function is: \[ f^{-1}(x) = \frac{6 - 9x}{7x - 5} \] ### Final Answer The inverse of the function \( f(x) \) is: \[ f^{-1}(x) = \frac{6 - 9x}{7x - 5} \]

To find the inverse of the function \( f(x) = \frac{5x + 6}{7x + 9} \), we will follow these steps: ### Step 1: Set \( f(x) \) equal to \( y \) Let \( y = f(x) \). Therefore, we have: \[ y = \frac{5x + 6}{7x + 9} \] ...
Promotional Banner

Similar Questions

Explore conceptually related problems

Let f: R-{3/5}->R be defined by f(x)=(3x+2)/(5x-3) . Then (a).f^-1(x)=f(x). (b).f-1(x)= -f(x). (c). (fof)=x (d). f-1(x)=(1/19)f(x)

If f(x)=(2x)/(5)+(7)/(3), f^(-1)(x)=

Let f:[4,oo)to[4,oo) be defined by f(x)=5^(x^((x-4))) .Then f^(-1)(x) is

Let f(x)=(9^(x))/(9^(x)+3) Let h(x)=intf(x)dx . If h(log_(9)6)=1 , then h(x)=

Let f(x) have a point of inflection at x=1 and let f^(")(x)=x. If f^(')(1)=0, then f(x) is equal to

If f(x) = 2 x^3 + 7x - 5 then f^(-1) (4) is :

Let f(x) = x^(2) - 5x + 6, g(x) = f(|x|), h(x) = |g(x)| The set of values of x such that equation g(x) + |g(x)| = 0 is satisfied contains

Let f(x) = (x)/(1+|x|), x in R , then f is

Let f: R-{-1}->R-{1} be given by f(x)=x/(x+1) . Write f^(-1)(x) .

Let f(x)={(|x+1|)/(tan^(- 1)(x+1)), x!=-1 ,1, x!=-1 Then f(x) is