Home
Class 12
MATHS
If d/dx (ϕ(x))=f(x), thenint(1)^(2) f(...

If `d/dx (ϕ(x))=f(x)`, then`int_(1)^(2) f(x) dx` is ______

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we need to find the value of the definite integral \( \int_{1}^{2} f(x) \, dx \) given that \( \frac{d}{dx} \phi(x) = f(x) \). ### Step-by-step Solution: 1. **Understand the Given Information**: We are given that \( \frac{d}{dx} \phi(x) = f(x) \). This means that \( f(x) \) is the derivative of the function \( \phi(x) \). 2. **Set Up the Integral**: We need to evaluate the integral \( \int_{1}^{2} f(x) \, dx \). Since we know that \( f(x) = \frac{d}{dx} \phi(x) \), we can substitute this into the integral: \[ \int_{1}^{2} f(x) \, dx = \int_{1}^{2} \frac{d}{dx} \phi(x) \, dx \] 3. **Apply the Fundamental Theorem of Calculus**: According to the Fundamental Theorem of Calculus, if \( F(x) \) is an antiderivative of \( f(x) \), then: \[ \int_{a}^{b} f(x) \, dx = F(b) - F(a) \] In our case, \( \phi(x) \) is an antiderivative of \( f(x) \). Therefore, we can write: \[ \int_{1}^{2} \frac{d}{dx} \phi(x) \, dx = \phi(2) - \phi(1) \] 4. **Final Result**: Thus, the value of the integral \( \int_{1}^{2} f(x) \, dx \) is: \[ \phi(2) - \phi(1) \] ### Conclusion: The final answer is \( \phi(2) - \phi(1) \). ---

To solve the given problem, we need to find the value of the definite integral \( \int_{1}^{2} f(x) \, dx \) given that \( \frac{d}{dx} \phi(x) = f(x) \). ### Step-by-step Solution: 1. **Understand the Given Information**: We are given that \( \frac{d}{dx} \phi(x) = f(x) \). This means that \( f(x) \) is the derivative of the function \( \phi(x) \). 2. **Set Up the Integral**: ...
Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x) in inegrable over [1,2] then int_(1)^(2) f(x) dx is equal to :

If f(0)=2,f'(x)=f(x),phi(x)=x+f(x)" then "int_(0)^(1)f(x)phi(x)dx is

If f(x) =(x-1)/(x+1),f^(2)(x)=f(f(x)),……..,……..f^(k+1)(x)=f(f^(k)(x)) ,k=1,2,3,……and g(x)=f^(1998)(x) then int_(1//e)^(1) g(x)dx is equal to

Let f (x) be a conitnuous function defined on [0,a] such that f(a-x)=f(x)"for all" x in [ 0,a] . If int_(0)^(a//2) f(x) dx=alpha, then int _(0)^(a) f(x) dx is equal to

int e^x {f(x)-f'(x)}dx= phi(x) , then int e^x f(x) dx is

int_n^(n+1)f(x) dx=n^2+n then int_(-1)^1 f(x) dx =

"If " (d)/(dx)f(x)=f'(x), " then " int(xf'(x)-2f(x))/(sqrt(x^(4)f(x)))dx is equal to

If for non zero x , 3f(x)+4f((1)/(x))=(1)/(x)-10 , then the value of int_(2)^(3)f(x)dx is

If f (6-x ) =f (x), for all then 1/5 int _(2)^(3) x [f (x) + f (x+1)]dx is equal to :

A function f(x) satisfie f(x)=f((c)/(x)) for some real number c( gt 1) and all positive number 'x'. If int_(1)^(sqrtc)(f(x))/(x)dx=3 , then int_(1)^(c)(f(x))/(x)dx is