Home
Class 12
MATHS
The value of x in (0, pi//2) satisfying ...

The value of x in `(0, pi//2)` satisfying `(sqrt(3)-1)/(sin x)+(sqrt(3)+1)/(cos x)=4 sqrt(2)` is

A

`(pi)/12`

B

`(11pi)/36`

C

`(13pi)/36`

D

`(pi)/6`

Text Solution

Verified by Experts

The correct Answer is:
A, B

`((sqrt(3)-1)/(2sqrt(2)))/(sinx)+ (sqrt((3)+1)/(2sqrt(2)))/(cosx)=2`
`implies"sin" (pi)/12. cos x+"cos" (pi)/12 sinx=sin2x`
`impliessin(x+(pi)/12)=sin2x`
`impliesn=(pi)/12` and `(11pi)/36`
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of x in (0,pi/2) satisfying (sqrt(3)-1)/(sinx)+(sqrt(3)+1)/(cosx)=4sqrt(2) is / are

The value of x in (0,pi/2) satisfying the equation, (sqrt3-1)/sin x+ (sqrt3+1)/cosx=4sqrt2 is -

If cos (pi/12) = (sqrt(2) + sqrt(6))/(4) , then all x in (0,pi/2) such that (sqrt(3)-1)/(sin x) + (sqrt(3)+1)/(cos x) = 4sqrt(2) , then find x.

The number of values of x in (0, pi) satisfying the equation (sqrt(3) "sin" x + "cos" x) ^(sqrt(sqrt(3)"sin" 2x -"cos" 2x+ 2)) = 4 , is

The value of x satisfying sin^(-1)(sqrt((3x-1)/(25)))+sin^(-1)(sqrt((3x+1)/(25)))=(pi)/(2) lies in the interval

The number of values of x in [0, 4 pi] satisfying the inequation |sqrt(3)"cos" x - "sin"x|ge2 , is

The value of x satisfying sqrt3^(-4+2log_(sqrt5)x)= 1//9 is

The set of values of x in (-pi, pi) satisfying the inequation |4"sin" x-1| lt sqrt(5) , is

Evaluate: int_0^(pi//2)(sqrt(sin x))/(sqrt(sin x)+sqrt(cos x))dx

The vaue of x satisfying sin^(-1)(x)+sin^(-1)(sqrt(15)x)=(pi)/2 is