Home
Class 12
MATHS
Let cosA+cosB=x,cos2A+cos2B=y,cos3A+cos3...

Let `cosA+cosB=x,cos2A+cos2B=y,cos3A+cos3B=z`,then which of the following is true

A

`cos^(2)A+cos^(2)B=1+ y/2`

B

`1/4(2x^(2)-y-2)=cosAcosB`

C

`2x^(2)+z=3x(1+y)`

D

`xyz=0AA A, BepsilonR`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given equations: 1. \( x = \cos A + \cos B \) 2. \( y = \cos 2A + \cos 2B \) 3. \( z = \cos 3A + \cos 3B \) ### Step 1: Express \( y \) in terms of \( x \) Using the double angle formula: \[ \cos 2A = 2\cos^2 A - 1 \] \[ \cos 2B = 2\cos^2 B - 1 \] Thus, \[ y = \cos 2A + \cos 2B = (2\cos^2 A - 1) + (2\cos^2 B - 1) = 2(\cos^2 A + \cos^2 B) - 2 \] Now, we can express \( \cos^2 A + \cos^2 B \) in terms of \( x \): \[ \cos^2 A + \cos^2 B = (\cos A + \cos B)^2 - 2\cos A \cos B = x^2 - 2\cos A \cos B \] Let \( \cos A \cos B = c \). Then, \[ y = 2(x^2 - 2c) - 2 = 2x^2 - 4c - 2 \] ### Step 2: Express \( c \) in terms of \( x \) and \( y \) From the equation for \( y \): \[ y + 2 = 2x^2 - 4c \implies 4c = 2x^2 - (y + 2) \implies c = \frac{2x^2 - y - 2}{4} \] ### Step 3: Express \( z \) in terms of \( x \) and \( y \) Using the triple angle formula: \[ \cos 3A = 4\cos^3 A - 3\cos A \] \[ \cos 3B = 4\cos^3 B - 3\cos B \] Thus, \[ z = \cos 3A + \cos 3B = (4\cos^3 A - 3\cos A) + (4\cos^3 B - 3\cos B) = 4(\cos^3 A + \cos^3 B) - 3(\cos A + \cos B) \] Using the identity for the sum of cubes: \[ \cos^3 A + \cos^3 B = (\cos A + \cos B)(\cos^2 A - \cos A \cos B + \cos^2 B) = x\left((\cos^2 A + \cos^2 B) - c\right) \] Substituting \( \cos^2 A + \cos^2 B = \frac{y + 2}{2} + c \): \[ z = 4x\left(\frac{y + 2}{2} + c - c\right) - 3x = 2x(y + 2) - 3x = 2xy + 4x - 3x = 2xy + x \] ### Conclusion We have established the relationships: 1. \( y = 2x^2 - 4c - 2 \) 2. \( c = \frac{2x^2 - y - 2}{4} \) 3. \( z = 2xy + x \) Now we can analyze which of the given options is true based on these derived equations.

To solve the problem, we start with the given equations: 1. \( x = \cos A + \cos B \) 2. \( y = \cos 2A + \cos 2B \) 3. \( z = \cos 3A + \cos 3B \) ### Step 1: Express \( y \) in terms of \( x \) ...
Promotional Banner

Similar Questions

Explore conceptually related problems

If A+B=pi/3 , and cosA+cosB=1 , then which of the following is true:

" if " |{:(sin x,,sin y,,sin z),(cos x,,cos y,,cos z),(cos^(3) x,,cos^(3)y,,cos^(3)z):}|=0 then which of the following is // are possible ?

If A=sqrt(sin2-sin sqrt(3)), B=sqrt(cos2-cos sqrt(3)) , then which of the following statement is true ?

If cos x=t a n x , then which of the following is true? (a) 1/(sinx)+cos^4x=1 (b) 1/(sinx)+cos^4x=2 (c) cos^(54)x+cos^2x=1 (d) cos^4x+cos^2x=2

If A, B, C are the angle of a triangle and |(sinA,sinB,sinC),(cosA,cosB,cosC),(cos^(3)A,cos^(3)B,cos^(3)C)|=0 , then show that DeltaABC is an isosceles.

a(cosC-cosB)=2(b-c)cos^2A/2

If sinA+sinB=a and cosA+cosB=b,then cos(A+B)

In a A B C ,if|1 1 1 1+cosA 1+cosB 1+cosC cos^2A+A cos^2B+cosB cos^2C+cosC|=0 show that A B C is an isosceles.

If three angles A, B, C are such that cos A+ cos B + cos C = 0 and if lambda cos A cos B cos C = cos 3A + cos 3B + cos 3C , then value of lambda is :

If cosA+cosB+cosC=0, then cos3A+cos3B+cos3C is equal to