Home
Class 12
MATHS
tan^(- 1)(x+2/x)-tan^(- 1)(4/x)=tan^(- 1...

`tan^(- 1)(x+2/x)-tan^(- 1)(4/x)=tan^(- 1)(x-2/x)`

A

`sqrt(3)`

B

`-sqrt(3)`

C

`-sqrt(2)`

D

`sqrt(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \[ \tan^{-1}\left(\frac{x+2}{x}\right) - \tan^{-1}\left(\frac{4}{x}\right) = \tan^{-1}\left(\frac{x-2}{x}\right), \] we will use the formula for the difference of two inverse tangents: \[ \tan^{-1}(a) - \tan^{-1}(b) = \tan^{-1}\left(\frac{a - b}{1 + ab}\right). \] ### Step 1: Apply the formula Let \( a = \frac{x+2}{x} \) and \( b = \frac{4}{x} \). Then, we can rewrite the left-hand side: \[ \tan^{-1}\left(\frac{x+2}{x}\right) - \tan^{-1}\left(\frac{4}{x}\right) = \tan^{-1}\left(\frac{\frac{x+2}{x} - \frac{4}{x}}{1 + \left(\frac{x+2}{x}\right)\left(\frac{4}{x}\right)}\right). \] ### Step 2: Simplify \( a - b \) Calculating \( a - b \): \[ \frac{x+2}{x} - \frac{4}{x} = \frac{x + 2 - 4}{x} = \frac{x - 2}{x}. \] ### Step 3: Simplify \( 1 + ab \) Calculating \( ab \): \[ ab = \left(\frac{x+2}{x}\right)\left(\frac{4}{x}\right) = \frac{4(x+2)}{x^2} = \frac{4x + 8}{x^2}. \] Thus, \[ 1 + ab = 1 + \frac{4x + 8}{x^2} = \frac{x^2 + 4x + 8}{x^2}. \] ### Step 4: Combine results Now substituting back into the formula: \[ \tan^{-1}\left(\frac{\frac{x-2}{x}}{\frac{x^2 + 4x + 8}{x^2}}\right) = \tan^{-1}\left(\frac{(x-2)x^2}{x(x^2 + 4x + 8)}\right) = \tan^{-1}\left(\frac{x^2(x-2)}{x^2 + 4x + 8}\right). \] ### Step 5: Set equal to the right-hand side Now we have: \[ \tan^{-1}\left(\frac{x^2(x-2)}{x^2 + 4x + 8}\right) = \tan^{-1}\left(\frac{x-2}{x}\right). \] ### Step 6: Equate the arguments Since the inverse tangent function is one-to-one, we can equate the arguments: \[ \frac{x^2(x-2)}{x^2 + 4x + 8} = \frac{x-2}{x}. \] ### Step 7: Cross-multiply Cross-multiplying gives: \[ x^2(x-2)^2 = (x-2)(x^2 + 4x + 8). \] ### Step 8: Simplify Assuming \( x - 2 \neq 0 \) (we will check this case later), we can divide both sides by \( x - 2 \): \[ x^2(x-2) = x^2 + 4x + 8. \] ### Step 9: Rearrange Rearranging gives: \[ x^3 - 2x^2 - x^2 - 4x - 8 = 0 \implies x^3 - 3x^2 - 4x - 8 = 0. \] ### Step 10: Factor or use the Rational Root Theorem Using the Rational Root Theorem or synthetic division, we can find that \( x = 4 \) is a root. Dividing \( x^3 - 3x^2 - 4x - 8 \) by \( x - 4 \) gives: \[ x^2 + x + 2 = 0. \] ### Step 11: Solve the quadratic The quadratic \( x^2 + x + 2 = 0 \) has no real roots (discriminant \( 1 - 8 < 0 \)). Thus, the only real solution is \( x = 4 \). ### Step 12: Check for \( x = 2 \) We also need to check if \( x - 2 = 0 \) leads to a solution: Setting \( x = 2 \): \[ \tan^{-1}(0) - \tan^{-1}(2) = \tan^{-1}(0) \implies -\tan^{-1}(2) = 0, \] which is not true. ### Final Solution Thus, the only solution is: \[ \boxed{4}. \]

To solve the equation \[ \tan^{-1}\left(\frac{x+2}{x}\right) - \tan^{-1}\left(\frac{4}{x}\right) = \tan^{-1}\left(\frac{x-2}{x}\right), \] we will use the formula for the difference of two inverse tangents: ...
Promotional Banner

Similar Questions

Explore conceptually related problems

If tan^(-1)(x+3/x)-tan^(-1)(x-3/x)=tan^(-1)6/x , then the value of x^4 is_____.

If tan^(-1)(x+3/x)-tan^(-1)(x-3/x)=tan^(-1)6/x , then the value of x^4 is_____.

Prove that tan^(-1)(x+1)+tan^(-1)(x-1)=tan^(-1)((2x)/(2-x^2))

If tan^(-1)(a/x)+tan^(-1)(b/x)+tan^(-1)(c /x)+tan^(-1)(d/x)=(pi)/(2) then x^(4)-x^(2)(Sigma ab)+abcd=

Solve the equation tan^(-1)((x+1)/(x-1))+tan^(-1)((x-1)/x)=tan^(-1)(-7)

Solve: tan^(- 1) (2+x) + tan^(- 1) (2 -x ) = tan^(-1) 2/3

tan^(- 1)(a/x)+tan^(- 1)(b/x)=pi/2 then x=

tan^(- 1)(a/x)+tan^(- 1)(b/x)=pi/2 then x=

show that tan^(-1)x+tan^(-1)((2x)/(1-x^2))=tan^(-1)((3x-x^3)/(1-3x^2)),|x|<1/sqrt3

Prove that tan^(-1)x+tan^(-1)(2x)/(1-x^2)=tan^(-1)((3x-x^3)/(1-3x^2)),|x|<1/(sqrt(3))