Home
Class 12
MATHS
If x and y are acute angles such that co...

If x and y are acute angles such that `cosx+cosy=9/4` and `sinx+siny=9/8` then `sin(x+y)=`

A

`2/5`

B

`3/4`

C

`3/5`

D

`4/5`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \sin(x+y) \) given the equations: 1. \( \cos x + \cos y = \frac{9}{4} \) 2. \( \sin x + \sin y = \frac{9}{8} \) ### Step 1: Rewrite the equations using sum-to-product identities Using the sum-to-product identities, we can rewrite the equations: \[ \cos x + \cos y = 2 \cos\left(\frac{x+y}{2}\right) \cos\left(\frac{x-y}{2}\right) \] \[ \sin x + \sin y = 2 \sin\left(\frac{x+y}{2}\right) \cos\left(\frac{x-y}{2}\right) \] ### Step 2: Set up the equations From the first equation, we have: \[ 2 \cos\left(\frac{x+y}{2}\right) \cos\left(\frac{x-y}{2}\right) = \frac{9}{4} \] From the second equation, we have: \[ 2 \sin\left(\frac{x+y}{2}\right) \cos\left(\frac{x-y}{2}\right) = \frac{9}{8} \] ### Step 3: Divide the two equations Dividing the second equation by the first equation gives: \[ \frac{2 \sin\left(\frac{x+y}{2}\right) \cos\left(\frac{x-y}{2}\right)}{2 \cos\left(\frac{x+y}{2}\right) \cos\left(\frac{x-y}{2}\right)} = \frac{\frac{9}{8}}{\frac{9}{4}} \] This simplifies to: \[ \tan\left(\frac{x+y}{2}\right) = \frac{9/8}{9/4} = \frac{4}{8} = \frac{1}{2} \] ### Step 4: Find \( \sin(x+y) \) Now we know: \[ \tan\left(\frac{x+y}{2}\right) = \frac{1}{2} \] Using the double angle formula for sine: \[ \sin(x+y) = 2 \sin\left(\frac{x+y}{2}\right) \cos\left(\frac{x+y}{2}\right) \] We can express \( \sin\left(\frac{x+y}{2}\right) \) and \( \cos\left(\frac{x+y}{2}\right) \) in terms of \( \tan\left(\frac{x+y}{2}\right) \): Let \( \tan\left(\frac{x+y}{2}\right) = \frac{1}{2} \). Then: \[ \sin\left(\frac{x+y}{2}\right) = \frac{1}{\sqrt{1^2 + 2^2}} = \frac{1}{\sqrt{5}} \] \[ \cos\left(\frac{x+y}{2}\right) = \frac{2}{\sqrt{1^2 + 2^2}} = \frac{2}{\sqrt{5}} \] Now substituting these values into the sine double angle formula: \[ \sin(x+y) = 2 \cdot \frac{1}{\sqrt{5}} \cdot \frac{2}{\sqrt{5}} = \frac{4}{5} \] ### Final Answer Thus, the value of \( \sin(x+y) \) is: \[ \sin(x+y) = \frac{4}{5} \]

To solve the problem, we need to find the value of \( \sin(x+y) \) given the equations: 1. \( \cos x + \cos y = \frac{9}{4} \) 2. \( \sin x + \sin y = \frac{9}{8} \) ### Step 1: Rewrite the equations using sum-to-product identities Using the sum-to-product identities, we can rewrite the equations: ...
Promotional Banner

Similar Questions

Explore conceptually related problems

if x and y are acute angles such that cosx + cosy = 3/2 and sinx + siny = 3/4 then sin(x+y)=

If cosx+cosy+cosz=sinx+siny+sinz=0" then "cos(x-y)=

If cosx+cosy+cosalpha=0 and sinx+siny+sinalpha=0 then cot((x+y)/2)=

Solve for x and y the system of equations sinx cos 2y=1 cosx sin 2y=0

Prove that: (cosx-cosy)^2+(sinx-siny)^2=4sin^2 (x-y)/2

If 3cosx + 2cos3x=cosy , 3sinx + 2sin3x =siny , then cos2x equals

If sinx =cosx and x is acute, state the value of x.

If cosx+cosy+cosalpha=0 and sinx + siny + sinalpha=0 , then cot((x+y)/2)=

Prove that: (cosx+cosy)^2+(sinx-siny)^2 =4cos^2 (x+y)/2

If sinx+cosy=1 , x=30^0 and y is an acute angle. Find the value of y