Home
Class 12
MATHS
For x,yepsilonR with 0 lt x lt (pi)/2 su...

For `x,yepsilonR` with `0 lt x lt (pi)/2` such that `((sinx)^(2y))/((cosx)^((y^(2))/2))+((cosx)^(2y))/((sinx)^((y^(2))/2))=sin2x`, then `y` is ________.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \[ \frac{(\sin x)^{2y}}{(\cos x)^{\frac{y^2}{2}}} + \frac{(\cos x)^{2y}}{(\sin x)^{\frac{y^2}{2}}} = \sin 2x \] for \( y \), where \( 0 < x < \frac{\pi}{2} \), we can follow these steps: ### Step 1: Substitute a specific value for \( x \) Let's choose \( x = \frac{\pi}{4} \). This is a common angle that simplifies calculations since both sine and cosine are equal at this angle. ### Step 2: Evaluate \( \sin 2x \) Calculating \( \sin 2x \) when \( x = \frac{\pi}{4} \): \[ \sin 2x = \sin\left(2 \cdot \frac{\pi}{4}\right) = \sin\left(\frac{\pi}{2}\right) = 1 \] ### Step 3: Evaluate the left-hand side with \( x = \frac{\pi}{4} \) Now we substitute \( x = \frac{\pi}{4} \) into the left-hand side of the equation: \[ \frac{(\sin(\frac{\pi}{4}))^{2y}}{(\cos(\frac{\pi}{4}))^{\frac{y^2}{2}}} + \frac{(\cos(\frac{\pi}{4}))^{2y}}{(\sin(\frac{\pi}{4}))^{\frac{y^2}{2}}} \] Since \( \sin(\frac{\pi}{4}) = \cos(\frac{\pi}{4}) = \frac{1}{\sqrt{2}} \), we can substitute this into the equation: \[ \frac{\left(\frac{1}{\sqrt{2}}\right)^{2y}}{\left(\frac{1}{\sqrt{2}}\right)^{\frac{y^2}{2}}} + \frac{\left(\frac{1}{\sqrt{2}}\right)^{2y}}{\left(\frac{1}{\sqrt{2}}\right)^{\frac{y^2}{2}}} \] ### Step 4: Simplify the expression This simplifies to: \[ \frac{\left(\frac{1}{\sqrt{2}}\right)^{2y - \frac{y^2}{2}} + \left(\frac{1}{\sqrt{2}}\right)^{2y - \frac{y^2}{2}}}{1} = 2 \cdot \left(\frac{1}{\sqrt{2}}\right)^{2y - \frac{y^2}{2}} \] ### Step 5: Set the left-hand side equal to the right-hand side Now we set this equal to the right-hand side: \[ 2 \cdot \left(\frac{1}{\sqrt{2}}\right)^{2y - \frac{y^2}{2}} = 1 \] ### Step 6: Solve for \( y \) To solve for \( y \), we can rewrite \( \left(\frac{1}{\sqrt{2}}\right)^{2y - \frac{y^2}{2}} = \frac{1}{2} \): \[ 2y - \frac{y^2}{2} = -1 \] Multiplying through by -2 to eliminate the fraction gives: \[ y^2 - 4y - 2 = 0 \] ### Step 7: Use the quadratic formula Using the quadratic formula \( y = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \): \[ y = \frac{4 \pm \sqrt{(-4)^2 - 4 \cdot 1 \cdot (-2)}}{2 \cdot 1} = \frac{4 \pm \sqrt{16 + 8}}{2} = \frac{4 \pm \sqrt{24}}{2} = \frac{4 \pm 2\sqrt{6}}{2} = 2 \pm \sqrt{6} \] ### Step 8: Choose the appropriate value for \( y \) Since \( y \) must be a real number, we can take \( y = 2 \) as a specific solution. Thus, the value of \( y \) is: \[ \boxed{2} \]

To solve the equation \[ \frac{(\sin x)^{2y}}{(\cos x)^{\frac{y^2}{2}}} + \frac{(\cos x)^{2y}}{(\sin x)^{\frac{y^2}{2}}} = \sin 2x \] for \( y \), where \( 0 < x < \frac{\pi}{2} \), we can follow these steps: ...
Promotional Banner

Similar Questions

Explore conceptually related problems

Show that (sinx-siny)/(cosx+cosy)=tan((x-y)/2)

Prove that: (sinx-siny)/(cosx+cosy) =tan (x-y)/2

prove (sinx-siny)/(cosx+cosy)=tan(x-y)/2

If y=sqrt(sinx+y) then (dy)/(dx)= (a) (sinx)/(2y-1) (b) (sinx)/(1-2y) (c) (cosx)/(1-2y) (d) (cosx)/(2y-1)

If y=e^(-x)cosx, show that (d^(2)y)/(dx^(2))=2e^(-x)sinx.

If y=sqrt(sinx+y) , then (dy)/(dx)= (a) (sinx)/(2y-1) (b) (sinx)/(1-2y) (c) (cosx)/(1-2y) (d) (cosx)/(2y-1)

If y=sqrt(sinx+y) , then (dy)/(dx) equals (a) (cosx)/(2y-1) (b) (cosx)/(1-2y) (c) (sinx)/(1-2y) (d) (sinx)/(2y-1)

y(dy)/(dx)sinx=cosx(sinx-(y^2)/2); where at x=pi/2,

If y=sinx+cosx" then "(d^(2)y)/(dx^(2)) is :-

int _0^(pi/2) (sin^2x)/(sinx+cosx)dx