Home
Class 12
MATHS
The value of cosx2x.cos3x…..cos 999x whe...

The value of `cosx2x.cos3x…..cos 999x` where `x=(2pi)/1999` is `p` then `2^(1000)p` is equal to __________

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( 2^{1000} p \) where \( p = \cos x \cos 2x \cos 3x \ldots \cos 999x \) and \( x = \frac{2\pi}{1999} \). ### Step-by-Step Solution: 1. **Define \( p \)**: \[ p = \cos x \cos 2x \cos 3x \ldots \cos 999x \] 2. **Define \( q \)**: Let's define another product: \[ q = \sin x \sin 2x \sin 3x \ldots \sin 999x \] 3. **Calculate \( pq \)**: We can express \( pq \) as: \[ pq = (\cos x \sin x)(\cos 2x \sin 2x)(\cos 3x \sin 3x) \ldots (\cos 999x \sin 999x) \] Using the identity \( \sin 2\theta = 2 \sin \theta \cos \theta \), we have: \[ pq = \frac{1}{2} \sin 2x \cdot \frac{1}{2} \sin 4x \cdots \frac{1}{2} \sin 1998x \] This results in: \[ pq = \frac{1}{2^{999}} \sin 2x \sin 4x \ldots \sin 1998x \] 4. **Relate \( \sin kx \)**: Notice that \( \sin(2\pi - kx) = -\sin(kx) \). Thus, we can pair terms: \[ \sin 2x \text{ with } \sin(1998x), \sin 4x \text{ with } \sin(1996x), \ldots \] Each pair contributes positively to the product. 5. **Calculate \( k_1 \) and \( k_2 \)**: Let: \[ k_1 = \sin 2x \sin 4x \ldots \sin 998x \] and: \[ k_2 = \sin 1000x \sin 1002x \ldots \sin 1998x \] 6. **Express \( k_2 \)**: We can express \( k_2 \) in terms of \( k_1 \): \[ k_2 = (-1)^{999} \sin 999x \sin 997x \ldots \sin x \] Since there are an even number of terms, the negative signs cancel out. 7. **Combine \( k_1 \) and \( k_2 \)**: Thus: \[ pq = \frac{1}{2^{999}} (k_1 k_2) \] This gives us: \[ pq = \frac{1}{2^{999}} \left( \sin x \sin 2x \ldots \sin 999x \right)^2 \] 8. **Simplify \( p \)**: Since \( k_1 \) and \( k_2 \) are both equal to \( q \): \[ pq = \frac{1}{2^{999}} q^2 \] Rearranging gives: \[ 2^{999} pq = q^2 \] 9. **Solve for \( p \)**: Dividing both sides by \( q \) (assuming \( q \neq 0 \)): \[ 2^{999} p = q \implies p = \frac{q}{2^{999}} \] 10. **Calculate \( 2^{1000} p \)**: Now we need to find: \[ 2^{1000} p = 2^{1000} \cdot \frac{q}{2^{999}} = 2 \cdot q \] 11. **Final Calculation**: Since \( q = \sin x \sin 2x \ldots \sin 999x \) is a product of sines, we can conclude that: \[ 2^{1000} p = 2 \] ### Final Answer: \[ \boxed{2} \]

To solve the problem, we need to find the value of \( 2^{1000} p \) where \( p = \cos x \cos 2x \cos 3x \ldots \cos 999x \) and \( x = \frac{2\pi}{1999} \). ### Step-by-Step Solution: 1. **Define \( p \)**: \[ p = \cos x \cos 2x \cos 3x \ldots \cos 999x \] ...
Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate cosacos2acos3a......... cos 999 a , where a=(2pi)/(1999)dot

The value of int(cos2x)/(cosx) dx is equal to

The value of cos(pi+x)cos(pi+x)sec^(2)x is

Solve cosx+cos3x-2cos2x=0

The value of int(sinx.cosx.cos2x.cos4x.cos8x.cos16x) dx is equal to

Solve cos3x+cosx-cos2x=0

The value of int(cos2x)/(sinx+cosx)^(2) dx is equal to

Solve: cos3x+cosx-cos2x=0

The value of int_(0)^(2pi)[sin2x(1+cos3x)] dx, where [t] denotes

The maximum value of cos^2(pi/3-x)-cos^2(pi/3+x) , is