Home
Class 12
MATHS
sum(k=1)^ook(1-1/n)^(k-1)=>? a.n(n-1)...

`sum_(k=1)^ook(1-1/n)^(k-1)=>? a.`n(n-1)` b. `n(n+1)` c. `n^2` d. `(n+1)^2`

Text Solution

Verified by Experts

The correct Answer is:
1

`(r^(2)+2)(r+1)!+2r(r+1)!=(r+1)(r+2)!-r(r+1)!`
Promotional Banner

Similar Questions

Explore conceptually related problems

sum_(n=1)^(oo)(2 n^2+n+1)/((n!)) =

sum_(n=1)^oo 1/((n+1)(n+2)(n+3).........(n+k))

The value of sum_(r=0)^(n-1)^n C_r//(^n C_r+^n C_(r+1)) equals a. n+1 b. n//2 c. n+2 d. none of these

Find sum_(i=1)^n sum_(i=1)^n sum_(k=1)^n (ijk)

Find the sum_(k=1)^(oo) sum_(n=1)^(oo)k/(2^(n+k)) .

Prove that sum_(k=0)^(n) (-1)^(k).""^(3n)C_(k) = (-1)^(n). ""^(3n-1)C_(n)

Find sum of sum_(r=1)^n r . C (2n,r) (a) n*2^(2n-1) (b) 2^(2n-1) (c) 2^(n-1)+1 (d) None of these

lim_(nrarroo) sum_(k=1)^(n)(k^(1//a{n^(a-(1)/(a))+k^(a-(1)/(a))}))/(n^(a+1)) is equal to

The value of sum_(r=0)^n(a+r+a r)(-a)^r is equal to a. (-1)^n[(n+1)a^(n+1)-a] b. (-1)^n(n+1)a^(n+1) c. (-1)^n((n+2)a^(n+1))/2 d. (-1)^n(n a^n)/2

Let f(n)=sum_(k=-n)^(n)(cot^(-1)((1)/(k))-tan^(-1)(k)) such that sum_(n=2)^(10)(f(n)+f(n-1))=a pi then find the value of (a+1) .