Home
Class 12
MATHS
Given the function f(x)=x^2e^-(2x),x>0. ...

Given the function `f(x)=x^2e^-(2x)`,x>0. Then f(x) has the maximum value equal to a) `e^-1` b) `(2e)^-1 .` c) `e^-2` d) none of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the maximum value of the function \( f(x) = x^2 e^{-2x} \) for \( x > 0 \), we will follow these steps: ### Step 1: Find the derivative of the function We start by differentiating the function \( f(x) \). \[ f'(x) = \frac{d}{dx}(x^2 e^{-2x}) \] Using the product rule, where \( u = x^2 \) and \( v = e^{-2x} \): \[ f'(x) = u'v + uv' \] Calculating \( u' \) and \( v' \): \[ u' = 2x, \quad v' = -2e^{-2x} \] Now substituting back into the product rule: \[ f'(x) = (2x)e^{-2x} + (x^2)(-2e^{-2x}) \] This simplifies to: \[ f'(x) = e^{-2x}(2x - 2x^2) \] Factoring out common terms: \[ f'(x) = 2e^{-2x}x(1 - x) \] ### Step 2: Set the derivative equal to zero To find the critical points, we set \( f'(x) = 0 \): \[ 2e^{-2x}x(1 - x) = 0 \] This gives us two factors to consider: 1. \( 2e^{-2x} = 0 \) (not possible since \( e^{-2x} > 0 \) for all \( x \)) 2. \( x(1 - x) = 0 \) From \( x(1 - x) = 0 \), we get: \[ x = 0 \quad \text{or} \quad x = 1 \] Since we are considering \( x > 0 \), we have \( x = 1 \). ### Step 3: Determine if it is a maximum To confirm that \( x = 1 \) is a maximum, we can use the second derivative test or analyze the sign of \( f'(x) \) around \( x = 1 \). Calculating the second derivative \( f''(x) \) is complex, so we can check the sign of \( f'(x) \): - For \( x < 1 \), \( f'(x) > 0 \) (function is increasing). - For \( x > 1 \), \( f'(x) < 0 \) (function is decreasing). This indicates that \( x = 1 \) is indeed a maximum. ### Step 4: Calculate the maximum value Now we find the maximum value of \( f(x) \) at \( x = 1 \): \[ f(1) = 1^2 e^{-2 \cdot 1} = e^{-2} \] ### Conclusion Thus, the maximum value of \( f(x) \) is: \[ \boxed{e^{-2}} \]

To find the maximum value of the function \( f(x) = x^2 e^{-2x} \) for \( x > 0 \), we will follow these steps: ### Step 1: Find the derivative of the function We start by differentiating the function \( f(x) \). \[ f'(x) = \frac{d}{dx}(x^2 e^{-2x}) \] ...
Promotional Banner

Similar Questions

Explore conceptually related problems

The maximum value of x^(1/x),x >0 is (a) e^(1/e) (b) (1/e)^e (c) 1 (d) none of these

The maximum value of x^(1/x),x >0 is (a) e^(1/e) (b) (1/e)^e (c) 1 (d) none of these

If the function f(x)=x^3+e^(x/2) and g(x)=f ^(−1)(x) , then the value of g ′ (1) is

The function f(x)=x^2e^(-2x),x > 0. If l is maximum value of f(x) find [l^(-1)] (where [ ] denotes G.I.F.).

The maximum value of (logx)/x is (a) 1 (b) 2/e (c) e (d) 1/e

If function f(x)=x^(2)+e^(x//2) " and " g(x)=f^(-1)(x) , then the value of g'(1) is

If for a continuous function f,f(0)=f(1)=0,f^(prime)(1)=2a n dy(x)=f(e^x)e^(f(x)) , then y^(prime)(0) is equal to a. 1 b. 2 c. 0 d. none of these

If for a continuous function f,f(0)=f(1)=0,f^(prime)(1)=2 and y(x)=f(e^x)e^(f(x)) , then y^(prime)(0) is equal to a. 1 b. 2 c. 0 d. none of these

The inverse of the function f(x)=(e^x-e^(-x))/(e^x+e^(-x))+2 is given by

If the functions f(x)=x^(3)+e^(x//2) " and " g(x)=f^(-1)(x) , the value of g'(1) is ………… .