Home
Class 12
MATHS
LatA = [a(ij)](3xx 3). If tr is arithmet...

Lat`A = [a_(ij)]_(3xx 3).` If tr is arithmetic mean of elements of rth row
and `a_(ij )+ a_( jk) + a_(ki)=0` holde for all `1 le i, j, k le 3.`
Matrix A is

A

`A` is a non singular matrix

B

`A` is a singular matrix

C

`sum_(1 let i, j le 3)a_(ij)` is equal to zero

D

`A` is a symmetric matrix

Text Solution

Verified by Experts

The correct Answer is:
B, C

Put `i=j=k`
`a_(ij)=0` and put `k=iimpliesa_(ij)=-a_(ji)`
So, matrix is skew symmetric of odd order.
Promotional Banner

Similar Questions

Explore conceptually related problems

Lat A = [a_(ij)]_(3xx 3). If tr is arithmetic mean of elements of rth row and a_(ij )+ a_( jk) + a_(ki)=0 holde for all 1 le i, j, k le 3. sum_(1lei) sum_(jle3) a _(ij) is not equal to

Let A=[a_(ij)]_(mxxn) be a matrix such that a_(ij)=1 for all I,j. Then ,

Let A=[a_("ij")] be 3xx3 matrix and B=[b_("ij")] be 3xx3 matrix such that b_("ij") is the sum of the elements of i^(th) row of A except a_("ij") . If det, (A)=19 , then the value of det. (B) is ________ .

Let A=[a_(ij)] be a square matrix of order 3 and B=[b_(ij)] be a matrix such that b_(ij)=2^(i-j)a_(ij) for 1lei,jle3, AA i,j in N . If the determinant of A is same as its order, then the value of |(B^(T))^(-1)| is

Let A=([a_(i j)])_(3xx3) be a matrix such that AA^T=4Ia n da_(i j)+2c_(i j)=0,w h e r ec_(i j) is the cofactor of a_(i j)a n dI is the unit matrix of order 3. |a_(11)+4a_(12)a_(13)a_(21)a_(22)+4a_(23)a_(31)a_(32)a_(33)+4|+5lambda|a_(11)+1a_(12)a_(13)a_(21)a_(22)+1a_(23)a_(31)a_(32)a_(33)+1|=0 then the value of 10lambda is _______.

Let A=[a_("ij")]_(3xx3) be a matrix such that A A^(T)=4I and a_("ij")+2c_("ij")=0 , where C_("ij") is the cofactor of a_("ij") and I is the unit matrix of order 3. |(a_(11)+4,a_(12),a_(13)),(a_(21),a_(22)+4,a_(23)),(a_(31),a_(32),a_(33)+4)|+5 lambda|(a_(11)+1,a_(12),a_(13)),(a_(21),a_(22)+1,a_(23)),(a_(31),a_(32),a_(33)+1)|=0 then the value of lambda is

Construct 3xx3 matrix whose elements are given by : a_(ij) =i+j

Let A = [a_(ij)] " be a " 3 xx3 matrix and let A_(1) denote the matrix of the cofactors of elements of matrix A and A_(2) be the matrix of cofactors of elements of matrix A_(1) and so on. If A_(n) denote the matrix of cofactros of elements of matrix A_(n -1) , then |A_(n)| equals

Construct 3xx3 matrix whose elements are given by : a_(ij)=i-j

construct 2xx3 matrix whose elements are given by a_(ij) =i+2j