Home
Class 12
MATHS
Let agt0, bgt0, cgt0 and a+b+c=6 then ((...

Let `agt0, bgt0, cgt0` and `a+b+c=6` then `((ab+1)^(2))/(b^(2))+((bc+1)^(2))/(c^(2))+((ca+1)^(2))/(a^(2))` may be

A

`75/4`

B

`35`

C

`15`

D

`10`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression \[ \frac{(ab + 1)^2}{b^2} + \frac{(bc + 1)^2}{c^2} + \frac{(ca + 1)^2}{a^2} \] given that \( a, b, c > 0 \) and \( a + b + c = 6 \). ### Step 1: Rewrite the expression We can rewrite each term in the expression as follows: \[ \frac{(ab + 1)^2}{b^2} = \left(\frac{ab}{b} + \frac{1}{b}\right)^2 = (a + \frac{1}{b})^2 \] Thus, we can express the entire sum as: \[ \left(a + \frac{1}{b}\right)^2 + \left(b + \frac{1}{c}\right)^2 + \left(c + \frac{1}{a}\right)^2 \] ### Step 2: Apply the Cauchy-Schwarz Inequality Using the Cauchy-Schwarz inequality, we can say: \[ \left( (a + \frac{1}{b})^2 + (b + \frac{1}{c})^2 + (c + \frac{1}{a})^2 \right) \geq \frac{(a+b+c + \frac{1}{a} + \frac{1}{b} + \frac{1}{c})^2}{3} \] ### Step 3: Calculate \( a + b + c \) and \( \frac{1}{a} + \frac{1}{b} + \frac{1}{c} \) From the problem, we know \( a + b + c = 6 \). Now, we need to calculate \( \frac{1}{a} + \frac{1}{b} + \frac{1}{c} \). By the AM-HM inequality: \[ \frac{a + b + c}{3} \geq \frac{3}{\frac{1}{a} + \frac{1}{b} + \frac{1}{c}} \] This implies: \[ \frac{1}{a} + \frac{1}{b} + \frac{1}{c} \geq \frac{9}{6} = \frac{3}{2} \] ### Step 4: Substitute back into the inequality Now substituting back into our inequality: \[ \left( (a + \frac{1}{b})^2 + (b + \frac{1}{c})^2 + (c + \frac{1}{a})^2 \right) \geq \frac{(6 + \frac{3}{2})^2}{3} \] Calculating the right-hand side: \[ = \frac{(6 + 1.5)^2}{3} = \frac{(7.5)^2}{3} = \frac{56.25}{3} = 18.75 \] ### Step 5: Conclusion Thus, we have shown that: \[ \frac{(ab + 1)^2}{b^2} + \frac{(bc + 1)^2}{c^2} + \frac{(ca + 1)^2}{a^2} \geq 18.75 \] The minimum value of the expression is \( \frac{75}{4} \).

To solve the problem, we need to evaluate the expression \[ \frac{(ab + 1)^2}{b^2} + \frac{(bc + 1)^2}{c^2} + \frac{(ca + 1)^2}{a^2} \] given that \( a, b, c > 0 \) and \( a + b + c = 6 \). ...
Promotional Banner

Similar Questions

Explore conceptually related problems

If a gt 0,bgt 0,cgt0 and 2a +b+3c=1 , then

If a , b , c are all non-zero and a+b+c=0 , then (a^(2))/(bc)+(b^(2))/(ca)+(c^(2))/(ab)= ? .

Let a, b and c be such that a + b + c= 0 and P=a^(2)/(2a^(2)+ bc) + b^(2)/(2b^(2) + ca) + c^(2)/(2c^(2) + ab) is defined. What is the value of P.

If a^(2) + b^(2) + c^(3) + ab + bc + ca le 0 for all, a, b, c in R , then the value of the determinant |((a + b +2)^(2),a^(2) + b^(2),1),(1,(b +c + 2)^(2),b^(2) + c^(2)),(c^(2) + a^(2),1,(c +a +2)^(2))| , is equal to

If agt0,bgt0,cgt0, then the minimum value of sqrt((4a)/(b))+root(3)((27b)/(c))+root(4)((c)/(108a)), is

If a+b+c=3 and agt0,bgt0,cgt0 then the greatest value of a^(2)b^(3)c^(2) is

Let a, b and c are the roots of the equation x^(3)-7x^(2)+9x-13=0 and A and B are two matrices given by A=[(a,b,c),(b,c,a),(c,a,b)] and B=[(bc-a^(2),ca-b^(2),ab-c^(2)),(ca-b^(2),ab-c^(2),bc-a^(2)),(ab-c^(2),bc-a^(2),ca-b^(2))] , then the value |A||B| is equal to

If a, b, c are in A.P., then prove that : (i) ab+bc=2b^(2) (ii) (a-c)^(2)=4(b^(2)-ac) (iii) a^(2)+c^(2)+4ca=2(ab+bc+ca).

If agt0, bgt0, cgt0 and the minimum value of a^2(b+c)+b^2(c+a)+c^2(a+b) is kabc, then k is (A) 1 (B) 3 (C) 6 (D) 4

If a,b,c and A,B,C in R-{0} such that aA+bB+cD+ sqrt((a^(2)+b^(2)+c^(2))(A^(2)+B^(2)+C^(2)))=0 , then value of (aB)/(bA) +(bC)/(cB) + (cA)/(aC) is