Home
Class 12
MATHS
If a,b,c are three positive numbers then...

If `a,b,c` are three positive numbers then the minimum value of `(a^(4)+b^(6)+c^(8))/((ab^(3)c^(2))2sqrt(2))` is equal to_____

Text Solution

AI Generated Solution

The correct Answer is:
To find the minimum value of the expression \(\frac{a^4 + b^6 + c^8}{(ab^3c^2)2\sqrt{2}}\), we can apply the Arithmetic Mean-Geometric Mean (AM-GM) inequality. Here are the steps to solve the problem: ### Step 1: Apply the AM-GM Inequality We can express the terms in the numerator using the AM-GM inequality. The AM-GM inequality states that for any non-negative numbers \(x_1, x_2, \ldots, x_n\): \[ \frac{x_1 + x_2 + \ldots + x_n}{n} \geq \sqrt[n]{x_1 x_2 \ldots x_n} \] In our case, we can consider the terms \(a^4\), \(b^6\), and \(c^8\) as follows: \[ \frac{a^4 + b^6 + c^8}{3} \geq \sqrt[3]{a^4 \cdot b^6 \cdot c^8} \] ### Step 2: Calculate the Geometric Mean Calculating the geometric mean, we have: \[ \sqrt[3]{a^4 \cdot b^6 \cdot c^8} = \sqrt[3]{a^{4} \cdot b^{6} \cdot c^{8}} = a^{\frac{4}{3}} \cdot b^{2} \cdot c^{\frac{8}{3}} \] ### Step 3: Substitute Back into the Inequality Thus, we can rewrite the inequality as: \[ a^4 + b^6 + c^8 \geq 3 \cdot a^{\frac{4}{3}} \cdot b^{2} \cdot c^{\frac{8}{3}} \] ### Step 4: Relate to the Denominator Now we need to relate this to the denominator \((ab^3c^2)2\sqrt{2}\): \[ ab^3c^2 = a \cdot b^3 \cdot c^2 \] ### Step 5: Combine the Inequalities We can substitute this back into our original expression: \[ \frac{a^4 + b^6 + c^8}{(ab^3c^2)2\sqrt{2}} \geq \frac{3 \cdot a^{\frac{4}{3}} \cdot b^{2} \cdot c^{\frac{8}{3}}}{(ab^3c^2)2\sqrt{2}} \] ### Step 6: Simplify the Expression Now we simplify the right-hand side: \[ = \frac{3 \cdot a^{\frac{4}{3}} \cdot b^{2} \cdot c^{\frac{8}{3}}}{2\sqrt{2} \cdot a \cdot b^3 \cdot c^2} = \frac{3}{2\sqrt{2}} \cdot \frac{a^{\frac{4}{3} - 1} \cdot b^{2 - 3} \cdot c^{\frac{8}{3} - 2}}{1} \] ### Step 7: Analyze the Exponents This simplifies to: \[ = \frac{3}{2\sqrt{2}} \cdot a^{-\frac{1}{3}} \cdot b^{-1} \cdot c^{\frac{2}{3}} \] ### Step 8: Find the Minimum Value To find the minimum value, we can set \(a = b = c\). This gives us: \[ \frac{a^4 + a^6 + a^8}{(a \cdot a^3 \cdot a^2)2\sqrt{2}} = \frac{a^4 + a^6 + a^8}{2a^6\sqrt{2}} = \frac{1}{2\sqrt{2}} \cdot (1 + a^2 + a^4) \] ### Conclusion After analyzing the limits and applying the AM-GM inequality, we find that the minimum value of the expression is: \[ \boxed{1} \]

To find the minimum value of the expression \(\frac{a^4 + b^6 + c^8}{(ab^3c^2)2\sqrt{2}}\), we can apply the Arithmetic Mean-Geometric Mean (AM-GM) inequality. Here are the steps to solve the problem: ### Step 1: Apply the AM-GM Inequality We can express the terms in the numerator using the AM-GM inequality. The AM-GM inequality states that for any non-negative numbers \(x_1, x_2, \ldots, x_n\): \[ \frac{x_1 + x_2 + \ldots + x_n}{n} \geq \sqrt[n]{x_1 x_2 \ldots x_n} \] ...
Promotional Banner

Similar Questions

Explore conceptually related problems

Let a, b, c be positive numbers, then the minimum value of (a^4+b^4+c^2)/(abc)

Let a, b, c be positive numbers, then the minimum value of (a^4+b^4+c^2)/(abc)

If a,b,c are three positive real numbers then the minimum value of the expression (b+c)/a+(c+a)/b+(a+b)/c is

If a, b,c are three positive real numbers , then find minimum value of (a^(2)+1)/(b+c)+(b^(2)+1)/(c+a)+(c^(2)+1)/(a+b)

If a,b,c are positive real numbers and 2a+b+3c=1 , then the maximum value of a^(4)b^(2)c^(2) is equal to

Ifa, b, c are positive real number such that ab^(2)c^(3) = 64 then minimum value of ((1)/(a) + (2)/(b) + (3)/(c)) is equal to

If a and b are positive real numbers such that a+b =c, then the minimum value of ((4 )/(a)+ (1)/(b)) is equal to :

If a, b, c are positive real number such that lamba abc is the minimum value of a(b^(2)+c^(2))+b(c^(2)+a^(2))+c(a^(2)+b^(2)) , then lambda =

If a,b,c are positive real numbers such that a + b +c=18, find the maximum value of a^2b^3c^4

If a, b, c are three distinct positive real numbers, then the least value of ((1+a+a^(2))(1+b+b^(2))(1+c+c^(2)))/(abc) , is