Home
Class 12
MATHS
Prove by construction of truth table tha...

Prove by construction of truth table that `p vv ~ (p ^^q)` is a tautology

Text Solution

AI Generated Solution

The correct Answer is:
To prove that the expression \( p \lor \neg (p \land q) \) is a tautology using a truth table, we will follow these steps: ### Step 1: Create the truth table structure We need to list all possible truth values for the variables \( p \) and \( q \). Since both \( p \) and \( q \) can be either true (T) or false (F), we will have four combinations of truth values. ### Step 2: Fill in the truth values for \( p \) and \( q \) We will create the first two columns of our truth table for \( p \) and \( q \): | \( p \) | \( q \) | |---------|---------| | T | T | | T | F | | F | T | | F | F | ### Step 3: Calculate \( p \land q \) Next, we will compute the conjunction \( p \land q \) (p AND q): | \( p \) | \( q \) | \( p \land q \) | |---------|---------|------------------| | T | T | T | | T | F | F | | F | T | F | | F | F | F | ### Step 4: Calculate \( \neg (p \land q) \) Now, we will take the negation of \( p \land q \): | \( p \) | \( q \) | \( p \land q \) | \( \neg (p \land q) \) | |---------|---------|------------------|-------------------------| | T | T | T | F | | T | F | F | T | | F | T | F | T | | F | F | F | T | ### Step 5: Calculate \( p \lor \neg (p \land q) \) Finally, we will compute \( p \lor \neg (p \land q) \): | \( p \) | \( q \) | \( p \land q \) | \( \neg (p \land q) \) | \( p \lor \neg (p \land q) \) | |---------|---------|------------------|-------------------------|--------------------------------| | T | T | T | F | T | | T | F | F | T | T | | F | T | F | T | T | | F | F | F | T | T | ### Conclusion In the last column, we see that \( p \lor \neg (p \land q) \) is true (T) for all possible combinations of truth values for \( p \) and \( q \). Therefore, we conclude that the expression \( p \lor \neg (p \land q) \) is a tautology. ---
Promotional Banner

Similar Questions

Explore conceptually related problems

Prove by constructing truth table that (p ^^q) ^^ ~ (p vv q) is fallacy (contradiction)

construct truth table for p ^^ (q vv r)

construct truth table for (~p ^^ ~q) v(p ^^ ~q)

Show that (p^^q)vv(~p)vv(p^^~q) is a tautology

construct truth table for (p vv q)vv(r ^^ ~q)

construct truth table for ~(p ^^ q)

construct truth table for (p ^^q) v (~p ^^ q)

construct truth table for p vv(~q)

Construct truth table for ~ [ p vv(~ q)]

Construct the truth table for p ^^ q.