Home
Class 12
MATHS
Prove by constructing truth table that (...

Prove by constructing truth table that `(p ^^q) ^^ ``~ (p vv q)` is fallacy (contradiction)

Text Solution

AI Generated Solution

The correct Answer is:
To prove that the expression \((p \land q) \land \neg (p \lor q)\) is a contradiction, we will construct a truth table step by step. ### Step 1: Identify the Variables We have two variables: \(p\) and \(q\). ### Step 2: Create the Truth Table Structure We will create a truth table with the following columns: 1. \(p\) 2. \(q\) 3. \(p \lor q\) (disjunction) 4. \(\neg (p \lor q)\) (negation of disjunction) 5. \(p \land q\) (conjunction) 6. \((p \land q) \land \neg (p \lor q)\) (final expression) ### Step 3: Fill in the Values for \(p\) and \(q\) Since there are two variables, \(p\) and \(q\), we will have \(2^2 = 4\) combinations of truth values: - \(p = T, q = T\) - \(p = T, q = F\) - \(p = F, q = T\) - \(p = F, q = F\) ### Step 4: Calculate \(p \lor q\) Now we will calculate the values for \(p \lor q\): - If \(p = T\) and \(q = T\), then \(p \lor q = T\) - If \(p = T\) and \(q = F\), then \(p \lor q = T\) - If \(p = F\) and \(q = T\), then \(p \lor q = T\) - If \(p = F\) and \(q = F\), then \(p \lor q = F\) ### Step 5: Calculate \(\neg (p \lor q)\) Next, we find the negation of \(p \lor q\): - If \(p \lor q = T\), then \(\neg (p \lor q) = F\) - If \(p \lor q = F\), then \(\neg (p \lor q) = T\) ### Step 6: Calculate \(p \land q\) Now we calculate \(p \land q\): - If \(p = T\) and \(q = T\), then \(p \land q = T\) - If \(p = T\) and \(q = F\), then \(p \land q = F\) - If \(p = F\) and \(q = T\), then \(p \land q = F\) - If \(p = F\) and \(q = F\), then \(p \land q = F\) ### Step 7: Calculate \((p \land q) \land \neg (p \lor q)\) Finally, we calculate the final expression: - If \(p \land q = T\) and \(\neg (p \lor q) = F\), then \((p \land q) \land \neg (p \lor q) = F\) - If \(p \land q = F\) and \(\neg (p \lor q) = F\), then \((p \land q) \land \neg (p \lor q) = F\) - If \(p \land q = F\) and \(\neg (p \lor q) = F\), then \((p \land q) \land \neg (p \lor q) = F\) - If \(p \land q = F\) and \(\neg (p \lor q) = T\), then \((p \land q) \land \neg (p \lor q) = F\) ### Step 8: Compile the Truth Table Now we can compile the truth table: | \(p\) | \(q\) | \(p \lor q\) | \(\neg (p \lor q)\) | \(p \land q\) | \((p \land q) \land \neg (p \lor q)\) | |-------|-------|---------------|----------------------|----------------|---------------------------------------| | T | T | T | F | T | F | | T | F | T | F | F | F | | F | T | T | F | F | F | | F | F | F | T | F | F | ### Conclusion The last column of the truth table shows that \((p \land q) \land \neg (p \lor q)\) is always false, which means it is a contradiction (fallacy).
Promotional Banner

Similar Questions

Explore conceptually related problems

construct truth table for ~(~p ^^ ~q)

construct truth table for ~(p ^^ q)

Prove by construction of truth table that p vv ~ (p ^^q) is a tautology

construct truth table for (~p)^^ q

construct truth table for (~p)^^ (~q)

construct truth table for (p ^^q) v (~p ^^ q)

construct truth table for p vv(~q)

construct truth table for p ^^ (q vv r)

construct truth table for (~p ^^ ~q) v(p ^^ ~q)

construct truth table for (p vv q)vv(r ^^ ~q)