Home
Class 12
MATHS
An isosceles triangle A B C is inscribed...

An isosceles triangle `A B C` is inscribed in a circle `x^2+y^2=a^2` with the vertex `A` at `(a ,0)` and the base angle `B` and `C` each equal `75^0` . Then the coordinates of an endpoint of the base are (a) `(-(sqrt3a)/2, a/2)` (b) `(-(sqrt3a)/2, a)` (c)`(a/2,(sqrt3a)/2)` (d) `((sqrt3a)/2,-a/2)`

A

`((asqrt3)/2,a/2)`

B

`(-(asqrt3)/2,a/2)`

C

`((asqrt3)/2,-a/2)`

D

`(-(asqrt3)/2,-a/2)`

Text Solution

Verified by Experts

The correct Answer is:
B, D
Promotional Banner

Similar Questions

Explore conceptually related problems

The incenter of the triangle with vertices (1,sqrt(3)),(0,0), and (2,0) is (a) (1,(sqrt(3))/2) (b) (2/3,1/(sqrt(3))) (c) (2/3,(sqrt(3))/2) (d) (1,1/(sqrt(3)))

The eccentricity of the hyperbola x^2-4y^2=1 is a. (sqrt(3))/2 b. (sqrt(5))/2 c. 2/(sqrt(3)) d. 2/(sqrt(5))

The rationalisation factor of sqrt(3) is (a) -sqrt(3) (b) 1/(sqrt(3)) (c) 2sqrt(3) (d) -2sqrt(3)

Each side of an equilateral triangle is 8 cm. Its area is (a) 16sqrt(3)\ c m^2 (b) 32sqrt(3)\ c m^2 (c) 24sqrt(3)\ c m^2 (d) 8sqrt(3)\ c m^2

The direction ratio of the line OP are equal and the length OP=sqrt(3) . Then the coordinates of the point P are (A) (-1,-1,-1) (B) (sqrt(3),sqrt(3),sqrt(3)) (C) (sqrt(2),sqrt(2),sqrt(2)) (D) (2,2,2)

The length of the chord of the parabola y^2=x which is bisected at the point (2, 1) is (a) 2sqrt(3) (b) 4sqrt(3) (c) 3sqrt(2) (d) 2sqrt(5)

The rationalisation factor of 2+sqrt(3) is (a) 2-sqrt(3) (b) sqrt(2)+3 (c) sqrt(2)-3 (d) sqrt(3)-2

The height of an equilateral triangle is sqrt(6)\ c mdot Its area is (a) 3sqrt(3)\ c m^2 (b) 2sqrt(3)\ c m^2 (c) 2sqrt(2)\ c m^2 (d) 6sqrt(2)\ c m^2

An equilateral triangle S A B is inscribed in the parabola y^2=4a x having its focus at Sdot If chord A B lies towards the left of S , then the side length of this triangle is 2a(2-sqrt(3)) (b) 4a(2-sqrt(3)) a(2-sqrt(3)) (d) 8a(2-sqrt(3))

The value of sqrt(3-2\ sqrt(2)) is (a) sqrt(2)-1 (b) sqrt(2)+1 (c) sqrt(3)-sqrt(2) (d) sqrt(3)+\ sqrt(2)