Home
Class 12
MATHS
If x in R then prove that -5le (x^(2)+14...

If `x in R` then prove that `-5le (x^(2)+14x+9)/(x^(2)+2x+3)le 4`.

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

(x)/(x^(2)-5x+9)le1.

Solve (6x^2-5x-3)/(x^2-2x+6)le 4

|(x-3)/(x^(2)-4)|le 1.

-5 le (2-3x)/4 le 9

Find the domain of the function defined as f(x) = (x^(2) + 14x + 9)/(x^(2) -4x + 3) , where x in R .

If |x+2| le 9 , then

Using integration ,find the area of the region {(x,y) : y^(2) le 4x, 4x^(2) +4y^(2) le 9 }

If 4 le x le 9 , then

Solve the inequation : -12le (4-3x)/(-5x+2)

Let f (x)= max (x,x ^(2) x ^(3)) in -2 le x le 2. Then: