Home
Class 12
MATHS
If 1 lies between the roots of thequadra...

If 1 lies between the roots of thequadratic equation `3x^2-3sintheta.x-2cos^2theta=0`, then (A) `pi/3ltthetalt(5pi)/6` (B) `npilt2npi` (C) `2npi+pi/6ltthetalt2npi+(5pi)/6` (D) none of these

Text Solution

Verified by Experts

The correct Answer is:
`2n pi+(pi)/(6)lt theta lt 2n pi +(5pi)/(6)` and `theta ne (4n+1)pi//2, n in 1`
Promotional Banner

Similar Questions

Explore conceptually related problems

If 1 lies between the roots of the quadratic equation 3x^2-(3sintheta)x-2cos^2theta=0 , then : (A) -pi/3 lt theta lt(5pi)/3 (B) npilttheta lt 2npi (C) 2npi+pi/6 lt theta lt 2npi+(5pi)/6 (D) none of these

If sin^3theta+sinthetacos^2theta=1,t h e ntheta is equal to (n in Z) (a) 2npi (b) 2npi+pi/2 (c) 2npi-pi/2 (d) npi

If 3tan(theta-15^0)=tan(theta+15^0), then theta is equal to n in Z) n pi+pi/4 (b) npi+pi/8 npi+pi/3 (d) none of these

If 4\ cos^2theta+sqrt(3)=2(sqrt(3)+1)costheta, then theta is 2npi+-pi/3, n in I (b) 2npi+-pi/4, n in I 2npi+-\ pi/6, n in I (d) none of these

If roots of the equation 2x^2-4x+2sintheta-1=0 are of opposite sign, then theta belongs to (pi/6,(5pi)/6) (b) (0,pi/6)uu((5pi)/6,pi) ((13pi)/6,(17pi)/6) (d) (0,pi)

Let f(x)=-x^2 sin^2 theta-2x cos theta + 1, theta !=npi, nepsilonZ . If (1, 0) lies between the point where parabola cuts x-axis, then theta belongs to: (A) [-pi/2, pi/2] (B) [pi/2, pi] (C) [-pi, - pi/2] (D) none of these

The general values of theta satisfying the equation 2sin^2theta-3sintheta-2=0 is (n in Z)dot npi+(-1)^npi/6 (b) npi+(-1)^npi/2 npi+(-1)^n(5pi)/6 (d) npi+(-1)^n(7pi)/6

If sintheta= - 1/2 and tan theta = 1/sqrt(3) then the most general values of theta equal to (A) 2npi+pi/6 (B) 2npi=(5pi)/6 (C) 2npi+(7pi)/6 (D) none of these

The general solution of the equation 7cos^2theta+3sin^2theta=4 is theta=2npi+-pi/6,\ n Z b. theta=2npi+-(2pi)/3,\ n Z c. theta=2npi+-pi/3,\ n Z d. none of these

Solution of the equation sin(sqrt(1+sin2theta))=sintheta+costhetai s(n in Z) npi-pi/4 (b) npi+pi/(12) (c) npi+pi/6 (d) none of these