Home
Class 12
MATHS
Given that alpha, gamma are roots of the...

Given that `alpha`, `gamma` are roots of the equation `Ax^(2)-4x+1=0` and `beta`, `delta` are roots of the equation `Bx^(2)-6x+1=0`. If `alpha`, `beta`,`gamma` and `delta` are in `H.P.`, then

Text Solution

Verified by Experts

The correct Answer is:
A = 3, B = 8
Promotional Banner

Similar Questions

Explore conceptually related problems

Given that alpha,gamma are roots of the equation A x^2-4x+1=0,a n dbeta,delta the roots of the equation of B x^2-6x+1=0, such that alpha,beta,gamma,a n ddelta are in H.P., then a. A=3 b. A=4 B=2 d. B=8

Given that alpha,gamma are roots of the equation A x^2-4x+1=0,a n dbeta,delta the roots of the equation of B x^2-6x+1=0, such that alpha,beta,gamma,a n ddelta are in H.P., then a. A=3 b. A=4 B=2 d. B=8

Let alpha and beta be roots of the equation X^(2)-2x+A=0 and let gamma and delta be the roots of the equation X^(2)-18x+B=0 . If alpha lt beta lt gamma lt delta are in arithmetic progression then find the valus of A and B.

If alpha, beta are the roots of the equation x^(2)-2x-a^(2)+1=0 and gamma, delta are the roots of the equation x^(2)-2(a+1)x+a(a-1)=0 such that alpha, beta epsilonn (gamma, delta) find the value of a .

Let alpha, beta " the roots of " x^(2) -4x + A =0 and gamma, delta " be the roots of " x^(2) -36x +B =0. " If " alpha, beta , gamma, delta forms an increasing G.P. Then

If alpha, beta are the roots of the quadratic equation x ^(2)+ px+q=0 and gamma, delta are the roots of x ^(2)+px-r =0 then (alpha- gamma ) (alpha -delta ) is equal to :

If alpha , beta , gamma are the roots of the equation 9x^(3)-7x+6=0 then the equation x^(3)+Ax^(2)+Bx+C=0 has roots 3alpha+2 , 3beta+2 , 3gamma+2 , where

Suppose alpha, beta are roots of ax^(2)+bx+c=0 and gamma, delta are roots of Ax^(2)+Bx+C=0 . If alpha,beta,gamma,delta are in AP, then common difference of AP is

Suppose alpha, beta are roots of ax^(2)+bx+c=0 and gamma, delta are roots of Ax^(2)+Bx+C=0 . If alpha,beta,gamma,delta are in GP, then common ratio of GP is

Let alpha , beta, gamma, delta are roots of x ^(4) -12x ^(3) +lamda x ^(2) -54 x+ 14 =0 If alpha + beta =gamma + delta, then