Home
Class 12
MATHS
Find the value of a such that -a.9^(x)+(...

Find the value of a such that `-a.9^(x)+(a-2)3^(x)-((5)/(4)a-1)gt 0` for `x in (0,1)`. Where `a < 0`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the inequality \(-a \cdot 9^x + (a - 2) \cdot 3^x - \left(\frac{5}{4}a - 1\right) > 0\) for \(x \in (0, 1)\) and \(a < 0\), we will follow these steps: ### Step 1: Substitute \(3^x\) with \(y\) Let \(y = 3^x\). Then, we have: \[ 9^x = (3^x)^2 = y^2 \] Thus, we can rewrite the inequality as: \[ -a y^2 + (a - 2)y - \left(\frac{5}{4}a - 1\right) > 0 \] ### Step 2: Rearranging the inequality Rearranging gives us: \[ -a y^2 + (a - 2)y - \left(\frac{5}{4}a - 1\right) > 0 \] This is a quadratic inequality in \(y\). ### Step 3: Identify coefficients The quadratic can be expressed in the standard form \(Ay^2 + By + C > 0\) where: - \(A = -a\) - \(B = a - 2\) - \(C = -\left(\frac{5}{4}a - 1\right)\) ### Step 4: Conditions for the quadratic to be positive For the quadratic \(Ay^2 + By + C > 0\) to hold for all \(y\) in the interval \(0 < y < 1\): 1. \(A > 0\) (which means \(-a > 0\) or \(a < 0\), which is satisfied since \(a < 0\)) 2. The discriminant \(D = B^2 - 4AC < 0\) ### Step 5: Calculate the discriminant Now, we calculate the discriminant: \[ D = (a - 2)^2 - 4(-a)\left(-\left(\frac{5}{4}a - 1\right)\right) \] This simplifies to: \[ D = (a - 2)^2 - 4a\left(\frac{5}{4}a - 1\right) \] Expanding this: \[ D = (a - 2)^2 - 4a\left(\frac{5}{4}a - 1\right) = (a - 2)^2 - 5a^2 + 4a \] Now, simplifying further: \[ D = a^2 - 4a + 4 - 5a^2 + 4a = -4a^2 + 4 \] ### Step 6: Set the discriminant less than zero We need: \[ -4a^2 + 4 < 0 \] This simplifies to: \[ 4a^2 > 4 \quad \Rightarrow \quad a^2 > 1 \] Taking square roots gives: \[ |a| > 1 \] Since \(a < 0\), we have: \[ a < -1 \] ### Conclusion Thus, the value of \(a\) that satisfies the inequality is: \[ a \in (-\infty, -1) \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the value of tan^(-1)(-x)-cot^(-1)(-1/x),x gt0

Find the value of x such that [(1,x,1)][(1, 3, 2),( 2, 5, 1), (15, 3, 2)][(1),( 2),(x)]=0

Find value of x and y: (5x-4y+8=0),(7x+6y-9=0)

Find value of x and y: (5x-4y+8=0),(7x+6y-9=0)

Find the maximum value of xyz when (x)/(1)+(y^2)/(4)+(z^3)/(27)=1 , where x,y,zgt 0 .

Find all values of x that make |(2,-1,4),(3,0,5),(4,1,6)|=|(x,4),(5,x)|

Find all values of the parameter a for which the inequality a.9^x +4(a-1)3^x+a gt 1 is satisfied for all real values of x

Find the values of x satisfying the inequalities : log_(0.1) (4x^2-1)gtlog_(0.1) 3x

Find the value of x and y in given equations x+2y+3=0 and 4x-5y+1=0 .

Find the values of x and y , if (3y -2) + (5 -4x)i=0 , where , x y in R.