Home
Class 12
MATHS
If p(x)=ax^(2)+bx and q(x)=lx^(2)+mx+n w...

If `p(x)=ax^(2)+bx` and `q(x)=lx^(2)+mx+n` with `p(1)=q(1), p(2)-q(2)=1`, and `p(3)-q(3)=4`, then `p(4)-q(4)` is equal to

A

7

B

16

C

9

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we have the functions \( p(x) = ax^2 + bx \) and \( q(x) = lx^2 + mx + n \). We are given three conditions: 1. \( p(1) = q(1) \) 2. \( p(2) - q(2) = 1 \) 3. \( p(3) - q(3) = 4 \) We need to find \( p(4) - q(4) \). ### Step 1: Set up the equations based on the conditions **Condition 1: \( p(1) = q(1) \)** Calculating \( p(1) \) and \( q(1) \): \[ p(1) = a(1)^2 + b(1) = a + b \] \[ q(1) = l(1)^2 + m(1) + n = l + m + n \] Setting them equal gives us: \[ a + b = l + m + n \quad \text{(Equation 1)} \] **Condition 2: \( p(2) - q(2) = 1 \)** Calculating \( p(2) \) and \( q(2) \): \[ p(2) = a(2)^2 + b(2) = 4a + 2b \] \[ q(2) = l(2)^2 + m(2) + n = 4l + 2m + n \] Setting up the equation gives us: \[ (4a + 2b) - (4l + 2m + n) = 1 \implies 4a + 2b - 4l - 2m - n = 1 \quad \text{(Equation 2)} \] **Condition 3: \( p(3) - q(3) = 4 \)** Calculating \( p(3) \) and \( q(3) \): \[ p(3) = a(3)^2 + b(3) = 9a + 3b \] \[ q(3) = l(3)^2 + m(3) + n = 9l + 3m + n \] Setting up the equation gives us: \[ (9a + 3b) - (9l + 3m + n) = 4 \implies 9a + 3b - 9l - 3m - n = 4 \quad \text{(Equation 3)} \] ### Step 2: Solve the system of equations We have three equations: 1. \( a + b = l + m + n \) 2. \( 4a + 2b - 4l - 2m - n = 1 \) 3. \( 9a + 3b - 9l - 3m - n = 4 \) **Rearranging Equation 1:** From Equation 1, we can express \( n \): \[ n = a + b - l - m \quad \text{(Substituting this in Equations 2 and 3)} \] **Substituting \( n \) in Equation 2:** \[ 4a + 2b - 4l - 2m - (a + b - l - m) = 1 \] Simplifying this: \[ 4a + 2b - 4l - 2m - a - b + l + m = 1 \] \[ (4a - a) + (2b - b) + (-4l + l) + (-2m + m) = 1 \] \[ 3a + b - 3l - m = 1 \quad \text{(Equation 4)} \] **Substituting \( n \) in Equation 3:** \[ 9a + 3b - 9l - 3m - (a + b - l - m) = 4 \] Simplifying this: \[ 9a + 3b - 9l - 3m - a - b + l + m = 4 \] \[ (9a - a) + (3b - b) + (-9l + l) + (-3m + m) = 4 \] \[ 8a + 2b - 8l - 2m = 4 \quad \text{(Equation 5)} \] ### Step 3: Solve Equations 4 and 5 From Equation 4: \[ 3a + b - 3l - m = 1 \] From Equation 5: \[ 8a + 2b - 8l - 2m = 4 \] **Multiply Equation 4 by 2:** \[ 6a + 2b - 6l - 2m = 2 \quad \text{(Equation 6)} \] **Now subtract Equation 6 from Equation 5:** \[ (8a + 2b - 8l - 2m) - (6a + 2b - 6l - 2m) = 4 - 2 \] This simplifies to: \[ 2a - 2l = 2 \implies a - l = 1 \quad \text{(Equation 7)} \] ### Step 4: Substitute back to find values Substituting \( l = a - 1 \) back into Equation 4: \[ 3a + b - 3(a - 1) - m = 1 \] This simplifies to: \[ 3a + b - 3a + 3 - m = 1 \implies b - m + 3 = 1 \implies b - m = -2 \quad \text{(Equation 8)} \] Now we have two equations: 1. \( a - l = 1 \) 2. \( b - m = -2 \) ### Step 5: Calculate \( p(4) - q(4) \) To find \( p(4) - q(4) \): \[ p(4) = a(4^2) + b(4) = 16a + 4b \] \[ q(4) = l(4^2) + m(4) + n = 16l + 4m + n \] Thus, \[ p(4) - q(4) = (16a + 4b) - (16l + 4m + n) \] Substituting \( l = a - 1 \) and \( n = a + b - l - m \): \[ p(4) - q(4) = 16a + 4b - [16(a - 1) + 4m + (a + b - (a - 1) - m)] \] Simplifying this expression will yield the final result. ### Final Calculation After performing the calculations, we find: \[ p(4) - q(4) = 9 \] ### Conclusion Thus, the final answer is: \[ \boxed{9} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If p (x) = x ^(2) -4x+8 and q 9x)=x-3, what is the value of (q (p (5)))/(p (q (5))) ?

If z = x - iy and z'^(1/3) = p +iq, then 1/(p^2+q^2)(x/p+y/q) is equal to

If z = x - iy and z'^(1/3) = p +iq, then 1/(p^2+q^2)(x/p+y/q) is equal to

If P=[(lambda,0),(7,1)] and Q=[(4,0),(-7,1)] such that P^(2)=Q , then P^(3) is equal to

If x^(2) - 3x + 2 is factor of x^(4) - px^(2) + q then 2q - p is equal to

If log_(5)p = a and log_(2)q=a , then prove that (p^(4)q^(4))/(100) = 100^(2a-1)

If f(x) = px +q, where p and q are integers f (-1) = 1 and f (2) = 13, then p and q are

If the roots of the equation (1-q+p^(2)/2)x^(2) + p(1+q)x+q(q-1) +p^(2)/2=0 are equal, then show that p^(2) = 4q

If each pair of the three equations x^(2) - p_(1)x + q_(1) =0, x^(2) -p_(2)c + q_(2)=0, x^(2)-p_(3)x + q_(3)=0 have common root, prove that, p_(1)^(2)+ p_(2)^(2) + p_(3)^(2) + 4(q_(1)+q_(2)+q_(3)) =2(p_(2)p_(3) + p_(3)p_(1) + p_(1)p_(2))

If log_5p=a and log_2q=a , then prove that (p^4q^4)/(100)=100^(2a-1)