Home
Class 12
MATHS
Let f(x) =ax^(2) + bx + c and f(-1) lt 1...

Let `f(x) =ax^(2) + bx + c` and `f(-1) lt 1, f(1) gt -1, f(3) lt -4` and `a ne 0`, then

A

`a gt 0`

B

`a lt 1`

C

`a lt - 1//8`

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=ax^(2)+bx+c, f(-1) gt (1)/(2), f(1) lt -1 and f(-3)lt -(1)/(2) , then

Using matrix method, find the quadratic defined by f(x) = ax^(2) + bx + c if f(1) = 0, f(2) = -2 and f(3) = -6. Hence find the value of f(-1).

If f(x)=ax^(2)+bx+c and f(-1) ge -4 , f(1) le 0 and f(3) ge 5 , then the least value of a is

If f(x) = ax^(2) + bx + c is such that |f(0)| le 1, |f(1)| le 1 and |f(-1)| le 1 , prove that |f(x)| le 5//4, AA x in [-1, 1]

(af(mu) lt 0) is the necessary and sufficient condition for a particular real number mu to lie between the roots of a quadratic equations f(x) =0, where f(x) = ax^(2) + bx + c . Again if f(mu_(1)) f(mu_(2)) lt 0 , then exactly one of the roots will lie between mu_(1) and mu_(2) . If c(a+b+c) lt 0 lt (a+b+c)a , then

Let f(x)=(x^(2)-2x+1)/(x+3),f i n d x: (i) f(x) gt 0 (ii) f(x) lt 0

Let f(x) = ax^(2) - bx + c^(2), b ne 0 and f(x) ne 0 for all x in R . Then

If f(x) = ax^2+bx+c and f(1)=3 and f(-1)=3, then a+c equals

If f(x^(2) - 4x + 4) = x^(2) + 1 . Find f(1) if f(1) lt 8 .

Let f (x) =ax ^(2) +bx + c,a ne 0, such the f (-1-x)=f (-1+ x) AA x in R. Also given that f (x) =0 has no real roots and 4a + b gt 0. Let p =b-4a, q=2a +b, then pq is: