Home
Class 12
MATHS
The least value of |a| for which tan the...

The least value of |a| for which `tan theta` and `cot theta` are the roots of the equation `x^(2)+ax+b=0`

A

2

B

1

C

`1//2`

D

0

Text Solution

AI Generated Solution

The correct Answer is:
To find the least value of |a| for which tan(θ) and cot(θ) are the roots of the equation \(x^2 + ax + b = 0\), we can follow these steps: ### Step 1: Identify the roots The roots of the quadratic equation are given as: - \(\alpha = \tan(\theta)\) - \(\beta = \cot(\theta)\) ### Step 2: Use the relationship between roots and coefficients From Vieta's formulas, we know: - The sum of the roots \(\alpha + \beta = -a\) - The product of the roots \(\alpha \beta = b\) ### Step 3: Calculate the sum of the roots We can express the sum of the roots: \[ \tan(\theta) + \cot(\theta) = \tan(\theta) + \frac{1}{\tan(\theta)} = \frac{\tan^2(\theta) + 1}{\tan(\theta)} \] Using the identity \(1 + \tan^2(\theta) = \sec^2(\theta)\), we have: \[ \tan(\theta) + \cot(\theta) = \frac{\sec^2(\theta)}{\tan(\theta)} \] ### Step 4: Simplify the expression for a Thus, we can express \(a\) as: \[ -a = \tan(\theta) + \cot(\theta) \implies a = -\left(\tan(\theta) + \cot(\theta)\right) \] ### Step 5: Substitute and simplify Substituting the expression for \(\tan(\theta) + \cot(\theta)\): \[ a = -\left(\tan(\theta) + \frac{1}{\tan(\theta)}\right) \] Let \(x = \tan(\theta)\), then: \[ a = -\left(x + \frac{1}{x}\right) \] ### Step 6: Find the minimum value of |a| We need to minimize \(|a|\): \[ |a| = \left| -\left(x + \frac{1}{x}\right) \right| = \left| x + \frac{1}{x} \right| \] The expression \(x + \frac{1}{x}\) is minimized when \(x = 1\) (using AM-GM inequality), giving: \[ x + \frac{1}{x} \geq 2 \] Thus, the minimum value of \(|a|\) occurs at: \[ |a| = 2 \] ### Conclusion The least value of \(|a|\) for which \(\tan(\theta)\) and \(\cot(\theta)\) are the roots of the equation \(x^2 + ax + b = 0\) is: \[ \boxed{2} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If the tan theta and sec theta are roots of the equation ax^(2)+bx+c=0, then

Solve tan5theta=cot2theta

Solve tan 5 theta= cot 2 theta .

Solve 2 tan theta-cot theta=-1 .

If tan theta + cot theta = 2 find sin theta ?

If tan^(2)theta, sec^(2)theta are the roots of ax^(2)+bx+c=0 then b^(2)- a^(2) =

If sin theta and -cos theta are the roots of the equation ax^(2) - bx - c = 0 , where a, b, and c are the sides of a triangle ABC, then cos B is equal to

If tan theta_1,tantheta_2,tan theta_3,tan theta_4 are the roots of the equation x^4-x^3sin2beta+x^2cos2beta-xcosbeta-sinbeta=0 then prove that tan(theta_1+theta_2+theta_3+theta_4)=cot beta

If tan theta_1,tantheta_2,tan theta_3,tan theta_4 are the roots of the equation x^4-x^3sin2beta+x^2cos2beta-xcosbeta-sinbeta=0 then prove that tan(theta_1+theta_2+theta_3+theta_4)=cot beta

Solve the equation 2 tan theta - cot theta + 1 = 0