Home
Class 12
MATHS
Find the domain of definition of the fol...

Find the domain of definition of the following functions :
`f(x)=sqrt(((x-1)(x+2))/((x-3)(x-4)))`

Text Solution

AI Generated Solution

The correct Answer is:
To find the domain of the function \( f(x) = \sqrt{\frac{(x-1)(x+2)}{(x-3)(x-4)}} \), we need to ensure that the expression under the square root is non-negative and that the denominator is not zero. ### Step 1: Identify the conditions for the square root The expression inside the square root must be greater than or equal to zero: \[ \frac{(x-1)(x+2)}{(x-3)(x-4)} \geq 0 \] ### Step 2: Determine the critical points The critical points occur when the numerator or denominator is zero: - From the numerator \( (x-1)(x+2) = 0 \): - \( x - 1 = 0 \) gives \( x = 1 \) - \( x + 2 = 0 \) gives \( x = -2 \) - From the denominator \( (x-3)(x-4) = 0 \): - \( x - 3 = 0 \) gives \( x = 3 \) - \( x - 4 = 0 \) gives \( x = 4 \) The critical points are \( x = -2, 1, 3, 4 \). ### Step 3: Test intervals around the critical points We will test the sign of the expression in the intervals determined by the critical points: - Intervals: \( (-\infty, -2) \), \( (-2, 1) \), \( (1, 3) \), \( (3, 4) \), \( (4, \infty) \) 1. **Interval \( (-\infty, -2) \)**: - Choose \( x = -3 \): \[ \frac{(-3-1)(-3+2)}{(-3-3)(-3-4)} = \frac{(-4)(-1)}{(-6)(-7)} = \frac{4}{42} > 0 \] 2. **Interval \( (-2, 1) \)**: - Choose \( x = 0 \): \[ \frac{(0-1)(0+2)}{(0-3)(0-4)} = \frac{(-1)(2)}{(-3)(-4)} = \frac{-2}{12} < 0 \] 3. **Interval \( (1, 3) \)**: - Choose \( x = 2 \): \[ \frac{(2-1)(2+2)}{(2-3)(2-4)} = \frac{(1)(4)}{(-1)(-2)} = \frac{4}{2} > 0 \] 4. **Interval \( (3, 4) \)**: - Choose \( x = 3.5 \): \[ \frac{(3.5-1)(3.5+2)}{(3.5-3)(3.5-4)} = \frac{(2.5)(5.5)}{(0.5)(-0.5)} = \frac{13.75}{-0.25} < 0 \] 5. **Interval \( (4, \infty) \)**: - Choose \( x = 5 \): \[ \frac{(5-1)(5+2)}{(5-3)(5-4)} = \frac{(4)(7)}{(2)(1)} = \frac{28}{2} > 0 \] ### Step 4: Compile results From the tests, we find: - The expression is non-negative in the intervals \( (-\infty, -2) \), \( (1, 3) \), and \( (4, \infty) \). - The points \( x = 3 \) and \( x = 4 \) are excluded since they make the denominator zero. ### Step 5: Write the domain Thus, the domain of the function \( f(x) \) is: \[ \text{Domain} = (-\infty, -2) \cup [1, 3) \cup (4, \infty) \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the domain of definition of the following functions : f(x)=sqrt(log_((1)/(2))(2x-3))

Find the domain of definitions of the following function: f(x)=sqrt(3-2^(x)-2^(1-x))

Find the domain of definitions of the following function: f(x)=sqrt(tanx-tan^(2)x)

Find the domain of definitions of the following function: f(x)=sqrt(1-sqrt(1-x^(2)))

Find the domain of definitions of the following function: f(x)=1/(sqrt(1-cosx))

Find the domain of definitions of the following function: f(x)=sqrt((x-2)/(x+2))+sqrt((1-x)/(1+x))

Find the domain of definitions of the following function: f(x)=(x^(2)+x+1)^(-3//2)

Find the domain of definition of the function f(x) = sqrt(64 - x^(2)) .

Find the domain of each of the following functions: f(x)=sqrt((log_(2)(x-2))/(log_(1//2)(3x-1)))

Find the domain of definition of the function f(x) = sqrt(x^(2) - 25)