Home
Class 12
MATHS
Find the domain of y=sqrt(log(3)(cos(s...

Find the domain of
`y=sqrt(log_(3)(cos(sinx)))`

Text Solution

AI Generated Solution

The correct Answer is:
To find the domain of the function \( y = \sqrt{\log_{3}(\cos(\sin x))} \), we need to ensure that the expression inside the square root is non-negative and that the logarithm is defined. ### Step-by-Step Solution: 1. **Identify the conditions for the square root**: The expression inside the square root must be greater than or equal to zero: \[ \log_{3}(\cos(\sin x)) \geq 0 \] 2. **Convert the logarithmic inequality**: The inequality \( \log_{3}(\cos(\sin x)) \geq 0 \) implies: \[ \cos(\sin x) \geq 3^{0} = 1 \] 3. **Analyze the cosine function**: The cosine function, \( \cos(\theta) \), has a maximum value of 1. Therefore, \( \cos(\sin x) = 1 \) is the only solution that satisfies the inequality \( \cos(\sin x) \geq 1 \). 4. **Set up the equation**: We need to find when \( \cos(\sin x) = 1 \). The cosine function equals 1 at integer multiples of \( 2\pi \): \[ \sin x = 2n\pi \quad \text{for } n \in \mathbb{Z} \] 5. **Find the values of \( x \)**: The sine function equals 0 at integer multiples of \( \pi \): \[ x = n\pi \quad \text{for } n \in \mathbb{Z} \] 6. **Conclusion**: Thus, the domain of the function \( y = \sqrt{\log_{3}(\cos(\sin x))} \) is: \[ x \in \{ n\pi \mid n \in \mathbb{Z} \} \] ### Final Answer: The domain of \( y = \sqrt{\log_{3}(\cos(\sin x))} \) is \( x = n\pi \) where \( n \) is any integer.
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the domain of y=sqrt((x-2)(x-3))

Find the range of f(x)=sqrt(log(cos(sinx)))

Find the domain of f(x) = (sqrt((1-sinx)))/((log)_5(1-4x^2))+cos^(-1)(1-{x})dot

Find domain of f(x)=sqrt(log_(1/2)((5x-x^2)/4))

7.Find the domain of y=sqrt{(x-1)/(x+1)}

Find the domain of the following functions: y=sqrt(log_(3)(cos(sinx)))

Find the domain of log(x-2)-sqrt((3-x))

Find the domain f(x)=sqrt((log_(0.3)|x-2|)/(|x|)) .

Solve sinx > -1/2 or find the domain of f(x)=1/(sqrt(1+2sinx))

Solve sinx >-1/2or find the domain of f(x)=1/(sqrt(1+2sinx))