Home
Class 12
MATHS
If f(x)=(x+1)/(x-1), x ne 1 , then f^(-1...

If `f(x)=(x+1)/(x-1)`, `x ne 1` , then `f^(-1)(x)` is

A

`(x+1)/(x-1)`, `x ne 1`

B

`(x+1)/(1-x)`, `x ne 1`

C

`(1)/(1+x)`, `x ne -1`

D

`(1)/(x-1)`, `x ne 1`

Text Solution

AI Generated Solution

The correct Answer is:
To find the inverse of the function \( f(x) = \frac{x + 1}{x - 1} \) where \( x \neq 1 \), we can follow these steps: ### Step 1: Set \( f(x) \) equal to \( y \) Let: \[ y = f(x) = \frac{x + 1}{x - 1} \] ### Step 2: Cross-multiply to eliminate the fraction Cross-multiplying gives us: \[ y(x - 1) = x + 1 \] ### Step 3: Expand and rearrange the equation Expanding the left side: \[ yx - y = x + 1 \] Now, rearranging to isolate terms involving \( x \): \[ yx - x = y + 1 \] ### Step 4: Factor out \( x \) Factoring \( x \) out from the left side: \[ x(y - 1) = y + 1 \] ### Step 5: Solve for \( x \) Now, solve for \( x \): \[ x = \frac{y + 1}{y - 1} \] ### Step 6: Change the variable to find \( f^{-1}(x) \) Since we initially set \( y = f(x) \), we can now replace \( y \) with \( x \) to express the inverse function: \[ f^{-1}(x) = \frac{x + 1}{x - 1} \] ### Final Answer Thus, the inverse function is: \[ f^{-1}(x) = \frac{x + 1}{x - 1}, \quad x \neq 1 \] ---
Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x) = (x-1)/(x+1), x ne -1, 1 , then "fof"^(-1) is

If A=R-{1} and function f:AtoA is defined by f(x)=(x+1)/(x-1) , then f^(-1)(x) is given by

If f(x)=x-(1)/(x), x ne 0 then f(x^(2)) equals.

f(x)=(1-x)/(1+x),x=-1 then f^(-1)(x) relation to

If y = f(x) = (x+2)/(x-1) , x ne1 , then show that x = f(y) .

If f(x)=(x-1)/(x+1) , then show that f(1/x)=-f(x) (ii) f(-1/x)=1/(f(x))

If f(x)=(x-1)/(x+1) , then show that f(1/x)=-f(x) (ii) f(-1/x)=-1/(f(x))

If f(x) = (1)/(1 -x) x ne 1 and g(x) = (x-1)/(x) , x ne0 , then the value of g[f(x)] is :

If f(x)=(x-1)/(x+1) , then f(f(a x)) in terms of f(x) is equal to (a)(f(x)-1)/(a(f(x)-1)) (b) (f(x)+1)/(a(f(x)-1)) (f(x)-1)/(a(f(x)+1)) (d) (f(x)+1)/(a(f(x)+1))

If f(x)=(x-1)/(x+1),x!=-1, then show that f(f(x))=-1/x provided that x != 0,-1