Home
Class 12
MATHS
If X={8^n-7n-1,n in N}and Y={49(n-1);nin...

If X=`{8^n-7n-1,n in N}`and Y=`{49(n-1);ninN}`, then prove that X is a subset of Y

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

If X={8^(n)-7n-1,n in N} and Y={49(n-1):n inN}, then prove that X sube Y .

If X={4^(n)-3n-1:n in N} and {9(n-1):n in N} , the prove that X sub Y .

If X={8^n-7n-1 | n in N} and Y={49n-49| n in N} . Then

If X={4^(n)-3n-1 : n in N} and Y={9(n-1) : n in N} , then

If X={4^(n)-3n-1:ninN}andy={9(n-1):ninN} , then X uu Y equals

Statement -I: X={8n+1:n inN},then XnnY=Y, Y={(2n+1)^2:n in N} because statement -II:x is a subset of y

If A={x:x=2n+1,nin Z}and B={x:x = 2n ,ninn Z} then A cup B=

If f(x) = (a-x^n)^(1/n), a > 0 and n in N , then prove that f(f(x)) = x for all x.

If N_(a)={an:ninN} , then N_(5) nn N_(7) equals

If the middle term of the expansion of (1+x)^(2n) is the greatest term then prove that x lies between (n)/(n+ 1)" and " (n+ 1)/(n)