Home
Class 12
MATHS
Let f(x)=|x-2|, then...

Let `f(x)=|x-2|`, then

A

`f(x^(2))=(f(x))^(2)`

B

`f(x+y)=f(x)f(y)`

C

`f(|x|)=|f(x)|`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the function \( f(x) = |x - 2| \) and evaluate the four given options one by one. ### Step 1: Evaluate Option 1 **Option 1:** \( f(x^2) = f(x)^2 \) 1. Calculate \( f(x^2) \): \[ f(x^2) = |x^2 - 2| \] 2. Calculate \( f(x)^2 \): \[ f(x) = |x - 2| \quad \Rightarrow \quad f(x)^2 = (|x - 2|)^2 = (x - 2)^2 \] 3. Compare \( f(x^2) \) and \( f(x)^2 \): - \( |x^2 - 2| \) is not equal to \( (x - 2)^2 \) for all \( x \). - For example, if \( x = 0 \): \[ f(0^2) = |0 - 2| = 2 \quad \text{and} \quad f(0)^2 = |0 - 2|^2 = 4 \] - Therefore, \( f(x^2) \neq f(x)^2 \). **Conclusion for Option 1:** Incorrect. ### Step 2: Evaluate Option 2 **Option 2:** \( f(x + y) = f(x) \cdot f(y) \) 1. Calculate \( f(x + y) \): \[ f(x + y) = |(x + y) - 2| = |x + y - 2| \] 2. Calculate \( f(x) \cdot f(y) \): \[ f(x) \cdot f(y) = |x - 2| \cdot |y - 2| \] 3. Compare \( f(x + y) \) and \( f(x) \cdot f(y) \): - These two expressions are not equal for all \( x \) and \( y \). - For example, if \( x = 0 \) and \( y = 0 \): \[ f(0 + 0) = |0 - 2| = 2 \quad \text{and} \quad f(0) \cdot f(0) = 2 \cdot 2 = 4 \] - Therefore, \( f(x + y) \neq f(x) \cdot f(y) \). **Conclusion for Option 2:** Incorrect. ### Step 3: Evaluate Option 3 **Option 3:** \( f(|x|) = |f(x)| \) 1. Calculate \( f(|x|) \): \[ f(|x|) = ||x| - 2| \] 2. Calculate \( |f(x)| \): \[ f(x) = |x - 2| \quad \Rightarrow \quad |f(x)| = ||x - 2|| \] - Since \( |x - 2| \) is always non-negative, we have \( |f(x)| = |x - 2| \). 3. Compare \( f(|x|) \) and \( |f(x)| \): - If \( x \geq 0 \): \[ f(|x|) = ||x| - 2| = |x - 2| \quad \text{and} \quad |f(x)| = |x - 2| \] - If \( x < 0 \): \[ f(|x|) = ||x| - 2| = |-x - 2| = |x + 2| \quad \text{and} \quad |f(x)| = |x - 2| \] - Both cases show that \( f(|x|) = |f(x)| \). **Conclusion for Option 3:** Correct. ### Step 4: Evaluate Option 4 **Option 4:** None of these. Since we have found that Option 3 is correct, we can conclude that Option 4 is not applicable. ### Final Conclusion - **Option 1:** Incorrect - **Option 2:** Incorrect - **Option 3:** Correct - **Option 4:** Incorrect
Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x)=x^2-5x+6 then find f(A) when A=[[2,0,1] , [2,1,3] , [1, -1, 0]]

Let f(x)={(1+|x-2|, ,x!=2), (2, , x=2):} then at x=2, f(x) has

Let f(x)={{:(-|x-2|, ,x le 3 ),(x^(2)-2x-4,, x gt 3 ):} Then the number of critical points on the graph of the function is

Let f(x) = [x], then f(-3/2) is equal to

Let f(x)=(x-2)^2x^n, n in N Then f(x) has a minimum at

Let f(x)=x^2-2x ,x in R ,a n dg(x)=f(f(x)-1)+f(5-f(x))dot Show that g(x)geq0AAx in Rdot

Let f(x)={(1+|x-2|,x!=2),(2,x=2):} then at x=2, f(x) has

Let f(x)={(x^2,x notin Z),((k(x^2-4))/(2-x),x notinZ):} Then, lim_(xto2) f(x)

Let f(x) =x^(2) , x in (-1,2) Then show that f(x) has exactly one point of local minima but global maximum Is not defined.

Let f(x)=x^2-5x+2 and g(x)=f(x-4). Find the positive root of the equation f(x)=g(2)