Home
Class 12
MATHS
If f(x)=e^x, then what should be (fofof)...

If `f(x)=e^x,` then what should be `(fofof) (x)`

A

`e^(e^(e^(x)))`

B

`e^(e^(x))`

C

`e^(e^(e^(x)))`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find \((fofof)(x)\) given that \(f(x) = e^x\). ### Step-by-Step Solution: 1. **Understand the Function**: We have \(f(x) = e^x\). 2. **Find \(f(f(x))\)**: - First, we need to find \(f(f(x))\). - Substitute \(f(x)\) into itself: \[ f(f(x)) = f(e^x) \] - Now apply the function \(f\) to \(e^x\): \[ f(e^x) = e^{e^x} \] 3. **Find \(f(f(f(x)))\)**: - Now we need to find \(f(f(f(x)))\) or \(f(f(f(x)))\). - Substitute \(f(f(x))\) into \(f\): \[ f(f(f(x))) = f(e^{e^x}) \] - Now apply the function \(f\) to \(e^{e^x}\): \[ f(e^{e^x}) = e^{e^{e^x}} \] 4. **Final Result**: - Therefore, \((fofof)(x) = e^{e^{e^x}}\). ### Conclusion: The final answer is: \[ (fofof)(x) = e^{e^{e^x}} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=e^(1-x) then f(x) is

If f(x) =e^(-x) , then f'(x) is ?

If f(x)=|log_(e) x|,then

If f(x)=e^(x)+2x , then f(ln 2)=

f(x)=x sgn (x^(2)) should be

If f(x)=x.e^(x(1-x), then f(x) is

If f(x)=sinx+e^x , then f''(x)

If int((x-1)/(x^2))e^x dx=f(x)e^x+c , then write the value of f(x) .

If int((x-1)/(x^2))e^x\ dx=f(x)\ e^x+C , then write the value of f(x) .

If f(x)=log_(e)[log_(e)x] , then what is f' (e) equal to?