Home
Class 12
MATHS
The range of f(x)=sin^(3)x in domain [-(...

The range of `f(x)=sin^(3)x` in domain `[-(pi)/(2),(pi)/(2)]` is

A

`[-1,1]`

B

`[-1,0]`

C

`[0,1]`

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x)=sin^(-1)x+|sin^(-1)x|+sin^(-1)|x| The range of f(x) is (a) [0,(pi)/(2)] (b) [0,(3pi)/(2)] (c) [0,(pi)/(4)] (d) [0,pi]

The minimum value of f(x)= "sin"x, [(-pi)/(2),(pi)/(2)] is

If function f(x) = (1+2x) has the domain (-(pi)/(2), (pi)/(2)) and co-domain (-oo, oo) then function is

The range of f(x)=sin^(-1)(sqrt(x^2+x+1)) i s (a) (0,pi/2) (b) (0,pi/3) (c) [pi/3,pi/2] (d) [pi/6,pi/3]

The range of f(x)=sin^(-1)((x^2+1)/(x^2+2)) is (a) [0,pi/2] (b) (0,pi/6) (c) [pi/6,pi/2] (d) none of these

bb"Statement I" The range of f(x)=sin(pi/5+x)-sin(pi/5-x)-sin((2pi)/5+x)+sin((2pi)/5-x) is [-1,1]. bb"Statement II " cos""pi/5-cos""(2pi)/5=1/2

The range of f(x)=sin^(-1)((x^2+1)/(x^2+2)) is (a)[0,pi/2] (b) (0,pi/6) (c) [pi/6,pi/2] (d) none of these

Separate the intervals of monotonocity of the function: f(x)=-sin^3x+3sin^2x+5,x in [-pi/2,pi/2]dot

Find the maximum and the minimum values of f(x)=sin3x+4,\ \ x in (-pi//2,\ pi//2) , if any.

The area bounded by f(x)=sin^(-1)(sinx) and g(x)=pi/2-sqrt(pi^(2)/2-(x-pi/2)^(2)) is