Home
Class 12
MATHS
Range of the function f(x)=(x^(2)-2)/(2x...

Range of the function `f(x)=(x^(2)-2)/(2x-3)` is

A

`(-oo,1] uu[2,oo)`

B

`[1,2]`

C

`(-oo,0)uu[2,oo)`

D

`(0,2]`

Text Solution

AI Generated Solution

The correct Answer is:
To find the range of the function \( f(x) = \frac{x^2 - 2}{2x - 3} \), we will follow these steps: ### Step 1: Set the function equal to \( y \) Let \( y = \frac{x^2 - 2}{2x - 3} \). ### Step 2: Cross-multiply to eliminate the fraction Rearranging gives: \[ y(2x - 3) = x^2 - 2 \] This simplifies to: \[ 2xy - 3y = x^2 - 2 \] ### Step 3: Rearrange the equation into standard quadratic form Rearranging gives: \[ x^2 - 2xy + (3y - 2) = 0 \] This is a quadratic equation in \( x \). ### Step 4: Identify coefficients for the quadratic equation In the quadratic equation \( ax^2 + bx + c = 0 \): - \( a = 1 \) - \( b = -2y \) - \( c = 3y - 2 \) ### Step 5: Apply the discriminant condition For \( x \) to have real solutions, the discriminant must be non-negative: \[ D = b^2 - 4ac \geq 0 \] Substituting the coefficients: \[ (-2y)^2 - 4(1)(3y - 2) \geq 0 \] This simplifies to: \[ 4y^2 - 12y + 8 \geq 0 \] ### Step 6: Simplify the inequality Dividing the entire inequality by 4 gives: \[ y^2 - 3y + 2 \geq 0 \] ### Step 7: Factor the quadratic Factoring the quadratic: \[ (y - 2)(y - 1) \geq 0 \] ### Step 8: Determine the intervals To find the intervals where this inequality holds, we identify the roots: - \( y = 1 \) - \( y = 2 \) Using a number line, we test intervals: 1. For \( y < 1 \): Choose \( y = 0 \) → \( (0 - 2)(0 - 1) = 2 > 0 \) (True) 2. For \( 1 < y < 2 \): Choose \( y = 1.5 \) → \( (1.5 - 2)(1.5 - 1) = -0.25 < 0 \) (False) 3. For \( y > 2 \): Choose \( y = 3 \) → \( (3 - 2)(3 - 1) = 2 > 0 \) (True) ### Step 9: Write the solution The solution to the inequality is: \[ y \in (-\infty, 1] \cup [2, \infty) \] ### Conclusion Thus, the range of the function \( f(x) = \frac{x^2 - 2}{2x - 3} \) is: \[ (-\infty, 1] \cup [2, \infty) \]
Promotional Banner

Similar Questions

Explore conceptually related problems

The range of the function f(x)=(x^(2)-2)/(x^(2)-3) is

Find the domain and range of the function f(x)=(x^(2)-9)/(x-3)

Find the domain and range of the function f(x)=(x^(2)-9)/(x-3)

Find the range fo the function f(x)=(x^(2)-x-6)/(x-3)

Range of the function f(x)=(x^2-3x+2)/(x^2+x-6) is

Range of the function f(x)=(x-2)/(x^2-4x+3) is

Write the domain and range of the function f(x)=(x-2)/(2-x) .

Range of the function f(x)=(1+x^2)/(x^2) is equal to

Range of the function f(x)=((x-2)^2)/((x-1)(x-3)) is

The range of the function f(x) = (x^2-9)/(x-3); x!=3 is