Home
Class 12
MATHS
If f(x)=(x-1)/(x+1) then f(2x) is equal ...

If `f(x)=(x-1)/(x+1)` then `f(2x)` is equal to

A

`(f(x)+1)/(f(x)+3)`

B

`(3f(x)+1)/(f(x)+3)`

C

`(f(x)+3)/(f(x)+1)`

D

`(f(x)+3)/(3f(x)+1)`

Text Solution

AI Generated Solution

The correct Answer is:
To find \( f(2x) \) given \( f(x) = \frac{x - 1}{x + 1} \), we will substitute \( 2x \) into the function \( f(x) \). ### Step-by-Step Solution: 1. **Substitute \( 2x \) into the function**: \[ f(2x) = \frac{2x - 1}{2x + 1} \] 2. **Simplify the expression**: The expression \( \frac{2x - 1}{2x + 1} \) is already in its simplest form. There are no common factors to cancel out. 3. **Conclusion**: Therefore, the final result is: \[ f(2x) = \frac{2x - 1}{2x + 1} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x) = (x-1)/(x+1) , then f(2) is equal to

If f(x) =xtan^(-1)x , then f '(1) is equal to

If f(x) = (x-1)/(x+1) then f(ax) in term of f(x) is equal to

If f(x+4) = x^(2) - 1 , then f(x) is equal to

If f(x)=(x-1)/(x+1) , then f(f(a x)) in terms of f(x) is equal to (a)(f(x)-1)/(a(f(x)-1)) (b) (f(x)+1)/(a(f(x)-1)) (f(x)-1)/(a(f(x)+1)) (d) (f(x)+1)/(a(f(x)+1))

If f'(x)=sqrt(x) and f(1)=2 then f(x) is equal to

If f:[1, oo) rarr [1, oo) is defined as f(x) = 3^(x(x-2)) then f^(-1)(x) is equal to

If f(x)= |1 x x+1 2x x(x-1)(x+1)x3x(x-1)x(x-1)(x-2)(x+1)x(x-1)| then f(500) is equal to a. 0 b. 1 c. 500 d. -500

f(x)=x/(x-1) then (f(a))/(f(a+1)) is equal to a. f(-a) b. f(1//a) c. f(a^2) d. f(-a/(a-1))

Let f(x) have a point of inflection at x=1 and let f^(")(x)=x. If f^(')(1)=0, then f(x) is equal to