Home
Class 12
MATHS
f(x)=cos(logx), then...

`f(x)=cos(logx)`, then

A

`f(x)` is defined in `x in (0,e]`

B

`f(x)` is defined in `x in ((1)/(e ),e]`

C

`f(x)f(y)-(1)/(2)(f((x)/(y))+f(xy))=0`

D

`f(x)f(y)+(1)/(2)[f((x)/(y))+f(xy)]=1`

Text Solution

Verified by Experts

The correct Answer is:
A, B, C
Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=sin(logx) then f(xy)+f(x/y)-2f(x)cos(logy)= (A) cos(logx) (B) sin(logy) (C) cos(log(xy)) (D) 0

If f(x)=cos((log)_e x),\ t h e n\ f(1/x)f(1/y)-1/2{f(x y)+f(x/y)} is equal to a. "cos"(x-y) b. log(cos(x-y)) c. 0 d. "cos"(x+y)

If f(x)=logx , then the derivative of f (logx)w.r.t.x is

If f(x)=log_x(lnx) then f'(x) at x=e is

If f(x)=|logx| , then for xne1,f'(x) equals

The differential coefficient of f(x)=log(logx) with respect to x is

If y=3cos(logx)+4sin(logx),\ then show that x^2(d^2\ y)/(dx^2)+x(dy)/(dx)+y=0

If y=x^((logx)^log(logx)) then (dy)/(dx)=

If f(x)=(log)_(x^2)(logx), then f^(prime)(x) at x=e is 0 (b) 1 (c) 1/e (d) 1/2e

If f(x)=(log)_(x^2)(logx), then f^(prime)(x) at x=e is 0 (b) 1 (c) 1/e (d) 1/2e