Home
Class 12
MATHS
Let f(x)=(x^(2)+1)/([x]),1lexle3.8,[.] d...

Let `f(x)=(x^(2)+1)/([x]),1lexle3.8,[.]` denote the greatest integer function then

A

dom `(f+g)=R~[-2,0)`

B

dom `(f+g)=R~[-1,0)`

C

range `f nn` range `g=[-2,1//2]`

D

range `f nn` range `g=[-(1)/(2),(1)/(2)]~{0}`

Text Solution

Verified by Experts

The correct Answer is:
A, B, C
Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x)=(x^(2)+2)/([x]),1 le x le3 , where [.] is the greatest integer function. Then the least value of f(x) is

If [.] denotes the greatest integer function, then f(x)=[x]+[x+(1)/(2)]

If f(x)=([x])/(|x|), x ne 0 , where [.] denotes the greatest integer function, then f'(1) is

Let f(x) = (1)/(sqrt(|x-1|-[x])) where[.] denotes the greatest integer funciton them the domain of f(x) is

Let f(x) = [x]^(2) + [x+1] - 3 , where [.] denotes the greatest integer function. Then

Let f(x)=sec^(-1)[1+cos^(2)x], where [.] denotes the greatest integer function. Then the

Let f(x)=|x| and g(x)=[x] , (where [.] denotes the greatest integer function) Then, (fog)'(-1) is

Let f:(6, 8)rarr (9, 11) be a function defined as f(x)=x+[(x)/(2)] (where [.] denotes the greatest integer function), then f^(-1)(x) is equal to

If f(x)=([x])/(|x|),x ne 0 where [.] denotes the greatest integer function, then f'(1) is

Let f(x)=sec^(-1)[1+cos^(2)x], where [.] denotes the greatest integer function. Then find the domain and range