Home
Class 12
MATHS
Sometimes functions are defined like f(x...

Sometimes functions are defined like `f(x)=max{sinx,cosx}`, then `f(x)` is splitted like `f(x)={{:(cosx, x in (0,(pi)/(4)]),(sinx, x in ((pi)/(4),(pi)/(2)]):}` etc.
If `f(x)=max{x^(2),2^(x)}`,then if `x in (0,1)`, `f(x)=`

A

`x^(2)`

B

`2^(x)`

C

both are equal

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem where \( f(x) = \max\{x^2, 2^x\} \) and we need to find \( f(x) \) for \( x \in (0, 1) \), we will follow these steps: ### Step 1: Understand the Functions We are given two functions: 1. \( g(x) = x^2 \) 2. \( h(x) = 2^x \) ### Step 2: Find the Intersection Points To determine where \( f(x) \) switches from one function to the other, we need to find the points where \( x^2 = 2^x \). ### Step 3: Solve the Equation We can solve the equation \( x^2 = 2^x \) graphically or numerically. 1. At \( x = 0 \): \[ 0^2 = 0 \quad \text{and} \quad 2^0 = 1 \quad \Rightarrow \quad 0 < 1 \] 2. At \( x = 1 \): \[ 1^2 = 1 \quad \text{and} \quad 2^1 = 2 \quad \Rightarrow \quad 1 < 2 \] 3. At \( x = 2 \): \[ 2^2 = 4 \quad \text{and} \quad 2^2 = 4 \quad \Rightarrow \quad 4 = 4 \] From the above evaluations, we can see that \( x^2 < 2^x \) for \( x \in (0, 1) \) and they intersect at \( x = 2 \). ### Step 4: Determine the Maximum Function in the Interval Since \( x^2 < 2^x \) for \( x \in (0, 1) \), we conclude that: \[ f(x) = 2^x \quad \text{for} \quad x \in (0, 1) \] ### Step 5: Conclusion Thus, for \( x \in (0, 1) \): \[ f(x) = 2^x \] ### Final Answer The final answer is: \[ f(x) = 2^x \quad \text{for} \quad x \in (0, 1) \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Sometimes functions are defined like f(x)=max{sinx,cosx} , then f(x) is splitted like f(x)={{:(cosx, x in (0,(pi)/(4)]),(sinx, x in ((pi)/(4),(pi)/(2)]):} etc. If f(x)=min{tanx, cotx} then f(x)=1 when x=

Sometimes functions are defined like f(x)=max{sinx,cosx} , then f(x) is splitted like f(x)={{:(cosx, x in (0,(pi)/(4)]),(sinx, x in ((pi)/(4),(pi)/(2)]):} etc. If f(x)=max{(1)/(2),sinx} , then f(x)=(1)/(2) is defined when x in

If f(x)=2sinx-x^(2) , then in x in [0, pi]

f(x)=1+[cosx]x,"in "0ltxle(pi)/(2)

If f(x)=|cosx-sinx| , then f'(pi/4) is equal to

If f(x)=|cosx-sinx| , then f'(pi/2) is equal to

The number of critical points of f(x)=max{sinx,cosx},AAx in(-2pi,2pi), is

Discuss the extremum of f(x)=sinx(1+cosx),x in (0,pi/2)

Discuss the extremum of f(x)=sinx(1+cosx),x in (0,pi/2)

If f(x)=(2-3cosx)/(sinx) , then f'((pi)/(4)) is equal to