Home
Class 12
MATHS
Sometimes functions are defined like f(x...

Sometimes functions are defined like `f(x)=max{sinx,cosx}`, then `f(x)` is splitted like `f(x)={{:(cosx, x in (0,(pi)/(4)]),(sinx, x in ((pi)/(4),(pi)/(2)]):}` etc.
If `f(x)=max{(1)/(2),sinx}`, then `f(x)=(1)/(2)` is defined when `x in `

A

`((pi)/(6),pi)`

B

`((pi)/(6),(5pi)/(6))`

C

`[(pi)/(6),(5pi)/(6)]`

D

`[0,(pi)/(6)]`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem where \( f(x) = \max\left\{\frac{1}{2}, \sin x\right\} \), we need to determine the intervals where \( f(x) = \frac{1}{2} \). ### Step-by-Step Solution: 1. **Understand the Function**: The function \( f(x) \) takes the maximum value between \( \frac{1}{2} \) and \( \sin x \). This means that we need to find out when \( \sin x \) is less than or equal to \( \frac{1}{2} \). 2. **Set Up the Inequality**: We need to solve the inequality: \[ \sin x \leq \frac{1}{2} \] 3. **Find the Critical Points**: The sine function equals \( \frac{1}{2} \) at specific angles: \[ x = \frac{\pi}{6} \quad \text{and} \quad x = \frac{5\pi}{6} \] 4. **Analyze the Intervals**: We will analyze the intervals around the critical points: - From \( 0 \) to \( \frac{\pi}{6} \) - From \( \frac{\pi}{6} \) to \( \frac{5\pi}{6} \) - From \( \frac{5\pi}{6} \) to \( \pi \) 5. **Evaluate Each Interval**: - **Interval \( (0, \frac{\pi}{6}) \)**: Here, \( \sin x \) is increasing from \( 0 \) to \( \frac{1}{2} \), so \( \sin x < \frac{1}{2} \). - **Interval \( (\frac{\pi}{6}, \frac{5\pi}{6}) \)**: In this interval, \( \sin x \) increases to \( 1 \) at \( \frac{\pi}{2} \) and then decreases back to \( \frac{1}{2} \). Thus, \( \sin x > \frac{1}{2} \) for \( x \in \left(\frac{\pi}{6}, \frac{5\pi}{6}\right) \). - **Interval \( (\frac{5\pi}{6}, \pi) \)**: Here, \( \sin x \) is decreasing and \( \sin x < \frac{1}{2} \). 6. **Combine the Results**: From the analysis: - \( f(x) = \frac{1}{2} \) when \( x \in [0, \frac{\pi}{6}] \) and \( x \in [\frac{5\pi}{6}, \pi] \). ### Final Answer: Thus, \( f(x) = \frac{1}{2} \) is defined when: \[ x \in [0, \frac{\pi}{6}] \cup [\frac{5\pi}{6}, \pi] \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Sometimes functions are defined like f(x)=max{sinx,cosx} , then f(x) is splitted like f(x)={{:(cosx, x in (0,(pi)/(4)]),(sinx, x in ((pi)/(4),(pi)/(2)]):} etc. If f(x)=max{x^(2),2^(x)} ,then if x in (0,1) , f(x)=

Sometimes functions are defined like f(x)=max{sinx,cosx} , then f(x) is splitted like f(x)={{:(cosx, x in (0,(pi)/(4)]),(sinx, x in ((pi)/(4),(pi)/(2)]):} etc. If f(x)=min{tanx, cotx} then f(x)=1 when x=

If f(x)=(2-3cosx)/(sinx) , then f'((pi)/(4)) is equal to

Is the function defined by f(x)=x^2-sinx+5 continuous at x=pi ?

If f(x)=|cosx-sinx| , then f'(pi/4) is equal to

If f(x)=|cosx-sinx| , then f'(pi/2) is equal to

The number of critical points of f(x)=max{sinx,cosx},AAx in(-2pi,2pi), is

Discuss the extremum of f(x)=sinx(1+cosx),x in (0,pi/2)

Discuss the extremum of f(x)=sinx(1+cosx),x in (0,pi/2)

If f(x)=2sinx-x^(2) , then in x in [0, pi]