Home
Class 12
MATHS
Sometimes functions are defined like f(x...

Sometimes functions are defined like `f(x)=max{sinx,cosx}`, then `f(x)` is splitted like `f(x)={{:(cosx, x in (0,(pi)/(4)]),(sinx, x in ((pi)/(4),(pi)/(2)]):}` etc.
If `f(x)=min{tanx, cotx}` then `f(x)=1` when `x=`

A

`(npi)/(2)+(pi)/(4)`

B

`npi+(pi)/(6)`

C

`npi+(pi)/(4)`

D

`2npi+(pi)/(4)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem where \( f(x) = \min\{\tan x, \cot x\} \) and we need to find when \( f(x) = 1 \), we can follow these steps: ### Step 1: Set the equation for \( f(x) \) We have: \[ f(x) = \min\{\tan x, \cot x\} \] We want to find when \( f(x) = 1 \). This means we need to solve the equations: \[ \tan x = 1 \quad \text{and} \quad \cot x = 1 \] ### Step 2: Solve \( \tan x = 1 \) The equation \( \tan x = 1 \) holds true at: \[ x = n\pi + \frac{\pi}{4} \] where \( n \) is any integer. ### Step 3: Solve \( \cot x = 1 \) The equation \( \cot x = 1 \) is equivalent to: \[ \tan x = 1 \] Thus, the solutions for \( \cot x = 1 \) are also: \[ x = n\pi + \frac{\pi}{4} \] ### Step 4: Determine the intervals Both equations give us the same general solution. Therefore, the function \( f(x) = 1 \) when: \[ x = n\pi + \frac{\pi}{4} \] for any integer \( n \). ### Conclusion The values of \( x \) for which \( f(x) = 1 \) are given by: \[ x = n\pi + \frac{\pi}{4}, \quad n \in \mathbb{Z} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Sometimes functions are defined like f(x)=max{sinx,cosx} , then f(x) is splitted like f(x)={{:(cosx, x in (0,(pi)/(4)]),(sinx, x in ((pi)/(4),(pi)/(2)]):} etc. If f(x)=max{(1)/(2),sinx} , then f(x)=(1)/(2) is defined when x in

Sometimes functions are defined like f(x)=max{sinx,cosx} , then f(x) is splitted like f(x)={{:(cosx, x in (0,(pi)/(4)]),(sinx, x in ((pi)/(4),(pi)/(2)]):} etc. If f(x)=max{x^(2),2^(x)} ,then if x in (0,1) , f(x)=

If f(x)=|cosx-sinx| , then f'(pi/4) is equal to

If f(x)=|cosx-sinx| , then f'(pi/2) is equal to

The number of critical points of f(x)=max{sinx,cosx},AAx in(-2pi,2pi), is

Discuss the extremum of f(x)=sinx(1+cosx),x in (0,pi/2)

Discuss the extremum of f(x)=sinx(1+cosx),x in (0,pi/2)

If f(x)=(2-3cosx)/(sinx) , then f'((pi)/(4)) is equal to

If f(x) = |cosx| , then f'(pi/4) is equal to "……."

If f:RrarrR defined by f(x)=sinx+x , then find the value of int_0^pi(f^-1(x))dx