Home
Class 12
MATHS
If A((3)/(sqrt2).sqrt(2)), B((-3)/(sqrt2...

If `A((3)/(sqrt2).sqrt(2)), B((-3)/(sqrt2).sqrt(2)), C((-3)/(sqrt2).-sqrt(2))` and `D(3costheta,2sintheta)` are four points, then find the maximum are of quadrilateral ABCD, where `theta epsilon(3pi//2,2pi)`.

A

`2 pi - sin^(-1) (1)/(3)`

B

`(7 pi)/(4)`

C

`2 pi - cos^(-1) (3)/(sqrt(85)`

D

`tan^(-1) (tan (7 pi)/(4))`

Text Solution

Verified by Experts

The correct Answer is:
B,D
Promotional Banner

Similar Questions

Explore conceptually related problems

If A(3/sqrt(2), sqrt(2)) , B(-3/sqrt(2), sqrt(2)), C(-3/sqrt(2), -sqrt(2)) and D(3 cos theta , 2 sin theta) are four points . If the area of the quadrilateral ABCD is maximum where theta in (3 pi/2, 2 pi) then (a) maximum area is 10 sq units (b) theta = 7 pi/4 (c) theta = 2 pi- sin^(-1) 3/ sqrt(85) (d) maximum area is 12 sq units

(4(sqrt(6) + sqrt(2)))/(sqrt(6) - sqrt(2)) - (2 + sqrt(3))/(2 - sqrt(3)) =

Simplify: 2/(sqrt(5)+\ sqrt(3))+1/(sqrt(3)+\ sqrt(2))-3/(sqrt(5)+\ sqrt(2))

(1)/(2sqrt(5)-sqrt(3))-(2sqrt(5)+sqrt(3))/(2sqrt(5)+sqrt(3)) =

If x=(sqrt(3)+sqrt(2))/(sqrt(3)-sqrt(2)) and y=(sqrt(3)-sqrt(2))/(sqrt(3)+sqrt(2)) , find x^2+y^2

If x=(sqrt(3)+sqrt(2))/(sqrt(3)-sqrt(2)) and y=(sqrt(3)-sqrt(2))/(sqrt(3)+sqrt(2)) , find x^2+y^2

If x=(sqrt(3)+sqrt(2))/(sqrt(3)-sqrt(2)) and y=(sqrt(3)-sqrt(2))/(sqrt(3)+sqrt(2)) find x^2+y^2

1/(sqrt3 + sqrt2) + 1/(sqrt3 -sqrt2)=

Show that : (3sqrt(2)-2sqrt(3))/(3sqrt(2)+2sqrt(3))+(2sqrt(3))/(sqrt(3)-sqrt(2))=11

If points A(5/sqrt2,sqrt3) and (cos^2theta, costheta) are the same side the line 2x - y = 1, then find the values of theta in [pi,2pi] .